Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».

Property Value
dbo:abstract
  • En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ». On formalise cela en disant que tout lacet tracé dans un espace simplement connexe doit pouvoir être réduit continûment (c'est-à-dire par homotopie) à un point. (fr)
  • En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ». On formalise cela en disant que tout lacet tracé dans un espace simplement connexe doit pouvoir être réduit continûment (c'est-à-dire par homotopie) à un point. (fr)
dbo:wikiPageID
  • 149124 (xsd:integer)
dbo:wikiPageInterLanguageLink
dbo:wikiPageLength
  • 4770 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190854609 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ». (fr)
  • En topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ». (fr)
rdfs:label
  • Conjunt simplement connex (ca)
  • Conjunto simplemente conexo (es)
  • Connexité simple (fr)
  • Enkelt sammanhängande mängd (sv)
  • Espaço simplesmente conectado (pt)
  • Przestrzeń jednospójna (pl)
  • Simply connected space (en)
  • Zusammenhängender Raum (de)
  • Односвязное пространство (ru)
  • 単連結空間 (ja)
  • 單連通 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of