Property |
Value |
dbo:abstract
|
- En apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. Intuitivement, le noyau polynomial ne tient pas compte uniquement des propriétés des échantillons d'entrée afin de déterminer leur similitude, mais aussi des combinaisons de ceux-ci. Dans le contexte de l'analyse de régression, de telles combinaisons sont connues comme les fonctionnalités d'interaction. L'espace caractéristique (implicite) d'un noyau polynomial est équivalent à celui de la régression polynomiale, mais sans l'explosion combinatoire du nombre de paramètres à apprendre. Lorsque les caractéristiques d'entrées sont des valeurs binaires (booléens), alors les caractéristiques correspondent à la conjonction logique des caractéristiques d'entrée. (fr)
- En apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. Intuitivement, le noyau polynomial ne tient pas compte uniquement des propriétés des échantillons d'entrée afin de déterminer leur similitude, mais aussi des combinaisons de ceux-ci. Dans le contexte de l'analyse de régression, de telles combinaisons sont connues comme les fonctionnalités d'interaction. L'espace caractéristique (implicite) d'un noyau polynomial est équivalent à celui de la régression polynomiale, mais sans l'explosion combinatoire du nombre de paramètres à apprendre. Lorsque les caractéristiques d'entrées sont des valeurs binaires (booléens), alors les caractéristiques correspondent à la conjonction logique des caractéristiques d'entrée. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6051 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. (fr)
- En apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. (fr)
|
rdfs:label
|
- Noyau polynomial (fr)
- Polynomial kernel (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |