Property |
Value |
dbo:abstract
|
- En mathématiques, une rotation hyperbolique est une application linéaire du plan euclidien qui laisse globalement invariantes des hyperboles ayant les mêmes asymptotes. Par une telle fonction, l'image d'une droite est une autre droite, dans le même quart de plan entre les asymptotes, ce qui donne l'impression qu'il y a eu une rotation de l'une à l'autre. Les fonctions hyperboliques en permettent une expression élégante, et la plus utilisée. Du fait qu'en relativité restreinte lors d'un changement de référentiel inertiel, des hyperboles doivent rester invariantes dans l'espace de Minkowski, on peut utiliser les rotations hyperboliques dans l'expression des transformations de Lorentz. (fr)
- En mathématiques, une rotation hyperbolique est une application linéaire du plan euclidien qui laisse globalement invariantes des hyperboles ayant les mêmes asymptotes. Par une telle fonction, l'image d'une droite est une autre droite, dans le même quart de plan entre les asymptotes, ce qui donne l'impression qu'il y a eu une rotation de l'une à l'autre. Les fonctions hyperboliques en permettent une expression élégante, et la plus utilisée. Du fait qu'en relativité restreinte lors d'un changement de référentiel inertiel, des hyperboles doivent rester invariantes dans l'espace de Minkowski, on peut utiliser les rotations hyperboliques dans l'expression des transformations de Lorentz. (fr)
|
dbo:isPartOf
| |
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4703 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, une rotation hyperbolique est une application linéaire du plan euclidien qui laisse globalement invariantes des hyperboles ayant les mêmes asymptotes. Par une telle fonction, l'image d'une droite est une autre droite, dans le même quart de plan entre les asymptotes, ce qui donne l'impression qu'il y a eu une rotation de l'une à l'autre. Les fonctions hyperboliques en permettent une expression élégante, et la plus utilisée. (fr)
- En mathématiques, une rotation hyperbolique est une application linéaire du plan euclidien qui laisse globalement invariantes des hyperboles ayant les mêmes asymptotes. Par une telle fonction, l'image d'une droite est une autre droite, dans le même quart de plan entre les asymptotes, ce qui donne l'impression qu'il y a eu une rotation de l'une à l'autre. Les fonctions hyperboliques en permettent une expression élégante, et la plus utilisée. (fr)
|
rdfs:label
|
- Contracción (geometría) (es)
- Rotation hyperbolique (fr)
- Contracción (geometría) (es)
- Rotation hyperbolique (fr)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |