Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A085737
Numerators in triangle formed from Bernoulli numbers.
13
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, -1, 1, 2, 1, -1, 0, -1, 1, 1, -1, 0, 1, -1, -1, 8, -1, -1, 1, 0, 1, -1, 4, 4, -1, 1, 0, -1, 1, -1, -4, 8, -4, -1, 1, -1, 0, -1, 1, -8, 4, 4, -8, 1, -1, 0, 5, -5, 7, 4, -116, 32, -116, 4, 7, -5, 5, 0, 5, -5, 32, -28, 16, 16, -28, 32, -5, 5, 0
OFFSET
0,13
COMMENTS
Triangle is determined by rules 0) the top number is 1; 1) each number is the sum of the two below it; 2) it is left-right symmetric; 3) the numbers in each of the border rows, after the first 3, are alternately 0.
Up to signs this is the difference table of the Bernoulli numbers (see A212196). The Sage script below is based on L. Seidel's algorithm and does not make use of a library function for the Bernoulli numbers; in fact it generates the Bernoulli numbers on the fly. - Peter Luschny, May 04 2012
LINKS
Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From N. J. A. Sloane, Nov 26 2011]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Peter Luschny, May 04 2012]
FORMULA
T(n, 0) = (-1)^n*Bernoulli(n), T(n, k) = T(n-1, k-1) - T(n, k-1) for k=1..n.
T(n,k) = Sum_{j=0..k} binomial(k,j)*Bernoulli(n-j). [Lange and Grabisch]
EXAMPLE
Triangle of fractions begins
1;
1/2, 1/2;
1/6, 1/3, 1/6;
0, 1/6, 1/6, 0;
-1/30, 1/30, 2/15, 1/30, -1/30;
0, -1/30, 1/15, 1/15, -1/30, 0;
1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42;
0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0;
-1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30;
MAPLE
nmax:=11; for n from 0 to nmax do T(n, 0):= (-1)^n*bernoulli(n) od: for n from 1 to nmax do for k from 1 to n do T(n, k) := T(n-1, k-1) - T(n, k-1) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(numer(T(n, k)), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 29 2011, revised Nov 25 2012
MATHEMATICA
t[n_, 0] := (-1)^n*BernoulliB[n]; t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1]; Table[t[n, k] // Numerator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014 *)
PROG
(Sage)
def BernoulliDifferenceTable(n) :
def T(S, a) :
R = [a]
for s in S :
a -= s
R.append(a)
return R
def M(A, p) :
R = T(A, 0)
S = add(r for r in R)
return -S / (2*p+3)
R = [1/1]
A = [1/2, -1/2]; R.extend(A)
for k in (0..n-2) :
A = T(A, M(A, k)); R.extend(A)
A = T(A, 0); R.extend(A)
return R
def A085737_list(n) : return [numerator(q) for q in BernoulliDifferenceTable(n)]
# Peter Luschny, May 04 2012
CROSSREFS
Cf. A085738, A212196. See A051714/A051715 for another triangle that generates the Bernoulli numbers.
Sequence in context: A328248 A360158 A329885 * A364249 A191904 A265892
KEYWORD
sign,frac,tabl
AUTHOR
N. J. A. Sloane, following a suggestion of J. H. Conway, Jul 23 2003
EXTENSIONS
Sign flipped in formula by Johannes W. Meijer, Jun 29 2011
STATUS
approved