@inproceedings{ha-etal-2020-automated,
title = "Automated Prediction of Examinee Proficiency from Short-Answer Questions",
author = "Ha, Le An and
Yaneva, Victoria and
Harik, Polina and
Pandian, Ravi and
Morales, Amy and
Clauser, Brian",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.77",
doi = "10.18653/v1/2020.coling-main.77",
pages = "893--903",
abstract = "This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs). While previous approaches train on manually labeled data to predict the human-ratings assigned to SAQ responses, the approach presented here models examinee proficiency directly and does not require manually labeled data to train on. We use data from a large medical exam where experimental SAQ items are embedded alongside 106 scored multiple-choice questions (MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency as its target variable. The predicted value is then used as a {``}score{''} for the SAQ response and evaluated in terms of its contribution to the precision of proficiency estimation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ha-etal-2020-automated">
<titleInfo>
<title>Automated Prediction of Examinee Proficiency from Short-Answer Questions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Le</namePart>
<namePart type="given">An</namePart>
<namePart type="family">Ha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Yaneva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Polina</namePart>
<namePart type="family">Harik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ravi</namePart>
<namePart type="family">Pandian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amy</namePart>
<namePart type="family">Morales</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brian</namePart>
<namePart type="family">Clauser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs). While previous approaches train on manually labeled data to predict the human-ratings assigned to SAQ responses, the approach presented here models examinee proficiency directly and does not require manually labeled data to train on. We use data from a large medical exam where experimental SAQ items are embedded alongside 106 scored multiple-choice questions (MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency as its target variable. The predicted value is then used as a “score” for the SAQ response and evaluated in terms of its contribution to the precision of proficiency estimation.</abstract>
<identifier type="citekey">ha-etal-2020-automated</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.77</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.77</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>893</start>
<end>903</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Prediction of Examinee Proficiency from Short-Answer Questions
%A Ha, Le An
%A Yaneva, Victoria
%A Harik, Polina
%A Pandian, Ravi
%A Morales, Amy
%A Clauser, Brian
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F ha-etal-2020-automated
%X This paper brings together approaches from the fields of NLP and psychometric measurement to address the problem of predicting examinee proficiency from responses to short-answer questions (SAQs). While previous approaches train on manually labeled data to predict the human-ratings assigned to SAQ responses, the approach presented here models examinee proficiency directly and does not require manually labeled data to train on. We use data from a large medical exam where experimental SAQ items are embedded alongside 106 scored multiple-choice questions (MCQs). First, the latent trait of examinee proficiency is measured using the scored MCQs and then a model is trained on the experimental SAQ responses as input, aiming to predict proficiency as its target variable. The predicted value is then used as a “score” for the SAQ response and evaluated in terms of its contribution to the precision of proficiency estimation.
%R 10.18653/v1/2020.coling-main.77
%U https://aclanthology.org/2020.coling-main.77
%U https://doi.org/10.18653/v1/2020.coling-main.77
%P 893-903
Markdown (Informal)
[Automated Prediction of Examinee Proficiency from Short-Answer Questions](https://aclanthology.org/2020.coling-main.77) (Ha et al., COLING 2020)
ACL