Abstract
This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT20 shared news translation task. We participate in four directions: English to (Khmer and Pashto) and (Khmer and Pashto) to English. Further, we get the best BLEU scores in the directions of English to Pashto, Pashto to English and Khmer to English (13.1, 23.1 and 25.5 respectively) among all the participants. Our submitted systems are unconstrained and focus on mBART (Multilingual Bidirectional and Auto-Regressive Transformers), back-translation and forward-translation. Also, we apply rules, language model and RoBERTa model to filter monolingual, parallel sentences and synthetic sentences. Besides, we validate the difference of the vocabulary built from monolingual data and parallel data.- Anthology ID:
- 2020.wmt-1.6
- Volume:
- Proceedings of the Fifth Conference on Machine Translation
- Month:
- November
- Year:
- 2020
- Address:
- Online
- Editors:
- Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 100–104
- Language:
- URL:
- https://aclanthology.org/2020.wmt-1.6
- DOI:
- Bibkey:
- Cite (ACL):
- Chao Bei, Hao Zong, Qingmin Liu, and Conghu Yuan. 2020. GTCOM Neural Machine Translation Systems for WMT20. In Proceedings of the Fifth Conference on Machine Translation, pages 100–104, Online. Association for Computational Linguistics.
- Cite (Informal):
- GTCOM Neural Machine Translation Systems for WMT20 (Bei et al., WMT 2020)
- Copy Citation:
- PDF:
- https://aclanthology.org/2020.wmt-1.6.pdf
- Video:
- https://slideslive.com/38939603
- Data
- FLoRes
Export citation
@inproceedings{bei-etal-2020-gtcom, title = "{GTCOM} Neural Machine Translation Systems for {WMT}20", author = "Bei, Chao and Zong, Hao and Liu, Qingmin and Yuan, Conghu", editor = {Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Graham, Yvette and Guzman, Paco and Haddow, Barry and Huck, Matthias and Yepes, Antonio Jimeno and Koehn, Philipp and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.6", pages = "100--104", abstract = "This paper describes the Global Tone Communication Co., Ltd.{'}s submission of the WMT20 shared news translation task. We participate in four directions: English to (Khmer and Pashto) and (Khmer and Pashto) to English. Further, we get the best BLEU scores in the directions of English to Pashto, Pashto to English and Khmer to English (13.1, 23.1 and 25.5 respectively) among all the participants. Our submitted systems are unconstrained and focus on mBART (Multilingual Bidirectional and Auto-Regressive Transformers), back-translation and forward-translation. Also, we apply rules, language model and RoBERTa model to filter monolingual, parallel sentences and synthetic sentences. Besides, we validate the difference of the vocabulary built from monolingual data and parallel data.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="bei-etal-2020-gtcom"> <titleInfo> <title>GTCOM Neural Machine Translation Systems for WMT20</title> </titleInfo> <name type="personal"> <namePart type="given">Chao</namePart> <namePart type="family">Bei</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hao</namePart> <namePart type="family">Zong</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Qingmin</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Conghu</namePart> <namePart type="family">Yuan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2020-11</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Fifth Conference on Machine Translation</title> </titleInfo> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="given">Jimeno</namePart> <namePart type="family">Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Online</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT20 shared news translation task. We participate in four directions: English to (Khmer and Pashto) and (Khmer and Pashto) to English. Further, we get the best BLEU scores in the directions of English to Pashto, Pashto to English and Khmer to English (13.1, 23.1 and 25.5 respectively) among all the participants. Our submitted systems are unconstrained and focus on mBART (Multilingual Bidirectional and Auto-Regressive Transformers), back-translation and forward-translation. Also, we apply rules, language model and RoBERTa model to filter monolingual, parallel sentences and synthetic sentences. Besides, we validate the difference of the vocabulary built from monolingual data and parallel data.</abstract> <identifier type="citekey">bei-etal-2020-gtcom</identifier> <location> <url>https://aclanthology.org/2020.wmt-1.6</url> </location> <part> <date>2020-11</date> <extent unit="page"> <start>100</start> <end>104</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T GTCOM Neural Machine Translation Systems for WMT20 %A Bei, Chao %A Zong, Hao %A Liu, Qingmin %A Yuan, Conghu %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Graham, Yvette %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Yepes, Antonio Jimeno %Y Koehn, Philipp %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %S Proceedings of the Fifth Conference on Machine Translation %D 2020 %8 November %I Association for Computational Linguistics %C Online %F bei-etal-2020-gtcom %X This paper describes the Global Tone Communication Co., Ltd.’s submission of the WMT20 shared news translation task. We participate in four directions: English to (Khmer and Pashto) and (Khmer and Pashto) to English. Further, we get the best BLEU scores in the directions of English to Pashto, Pashto to English and Khmer to English (13.1, 23.1 and 25.5 respectively) among all the participants. Our submitted systems are unconstrained and focus on mBART (Multilingual Bidirectional and Auto-Regressive Transformers), back-translation and forward-translation. Also, we apply rules, language model and RoBERTa model to filter monolingual, parallel sentences and synthetic sentences. Besides, we validate the difference of the vocabulary built from monolingual data and parallel data. %U https://aclanthology.org/2020.wmt-1.6 %P 100-104
Markdown (Informal)
[GTCOM Neural Machine Translation Systems for WMT20](https://aclanthology.org/2020.wmt-1.6) (Bei et al., WMT 2020)
- GTCOM Neural Machine Translation Systems for WMT20 (Bei et al., WMT 2020)
ACL
- Chao Bei, Hao Zong, Qingmin Liu, and Conghu Yuan. 2020. GTCOM Neural Machine Translation Systems for WMT20. In Proceedings of the Fifth Conference on Machine Translation, pages 100–104, Online. Association for Computational Linguistics.