@inproceedings{giorgi-etal-2021-discovering,
title = "Discovering Black Lives Matter Events in the {U}nited {S}tates: Shared Task 3, {CASE} 2021",
author = {Giorgi, Salvatore and
Zavarella, Vanni and
Tanev, Hristo and
Stefanovitch, Nicolas and
Hwang, Sy and
Hettiarachchi, Hansi and
Ranasinghe, Tharindu and
Kalyan, Vivek and
Tan, Paul and
Tan, Shaun and
Andrews, Martin and
Hu, Tiancheng and
Stoehr, Niklas and
Re, Francesco Ignazio and
Vegh, Daniel and
Atzenhofer, Dennis and
Curtis, Brenda and
H{\"u}rriyeto{\u{g}}lu, Ali},
editor = {H{\"u}rriyeto{\u{g}}lu, Ali},
booktitle = "Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.case-1.27",
doi = "10.18653/v1/2021.case-1.27",
pages = "218--227",
abstract = "Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events {``}in the wild{''} from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system{'}s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson $r$), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giorgi-etal-2021-discovering">
<titleInfo>
<title>Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Giorgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vanni</namePart>
<namePart type="family">Zavarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hristo</namePart>
<namePart type="family">Tanev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Stefanovitch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sy</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansi</namePart>
<namePart type="family">Hettiarachchi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Ranasinghe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Kalyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaun</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Andrews</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiancheng</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niklas</namePart>
<namePart type="family">Stoehr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="given">Ignazio</namePart>
<namePart type="family">Re</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Vegh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dennis</namePart>
<namePart type="family">Atzenhofer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brenda</namePart>
<namePart type="family">Curtis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hürriyetoğlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.</abstract>
<identifier type="citekey">giorgi-etal-2021-discovering</identifier>
<identifier type="doi">10.18653/v1/2021.case-1.27</identifier>
<location>
<url>https://aclanthology.org/2021.case-1.27</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>218</start>
<end>227</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021
%A Giorgi, Salvatore
%A Zavarella, Vanni
%A Tanev, Hristo
%A Stefanovitch, Nicolas
%A Hwang, Sy
%A Hettiarachchi, Hansi
%A Ranasinghe, Tharindu
%A Kalyan, Vivek
%A Tan, Paul
%A Tan, Shaun
%A Andrews, Martin
%A Hu, Tiancheng
%A Stoehr, Niklas
%A Re, Francesco Ignazio
%A Vegh, Daniel
%A Atzenhofer, Dennis
%A Curtis, Brenda
%A Hürriyetoğlu, Ali
%Y Hürriyetoğlu, Ali
%S Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F giorgi-etal-2021-discovering
%X Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.
%R 10.18653/v1/2021.case-1.27
%U https://aclanthology.org/2021.case-1.27
%U https://doi.org/10.18653/v1/2021.case-1.27
%P 218-227
Markdown (Informal)
[Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021](https://aclanthology.org/2021.case-1.27) (Giorgi et al., CASE 2021)
ACL
- Salvatore Giorgi, Vanni Zavarella, Hristo Tanev, Nicolas Stefanovitch, Sy Hwang, Hansi Hettiarachchi, Tharindu Ranasinghe, Vivek Kalyan, Paul Tan, Shaun Tan, Martin Andrews, Tiancheng Hu, Niklas Stoehr, Francesco Ignazio Re, Daniel Vegh, Dennis Atzenhofer, Brenda Curtis, and Ali Hürriyetoğlu. 2021. Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021. In Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021), pages 218–227, Online. Association for Computational Linguistics.