Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

多特征融合的越英端到端语音翻译方法(A Vietnamese-English end-to-end speech translation method based on multi-feature fusion)

Houli Ma (马候丽), Ling Dong (董凌), Wenjun Wang (王文君), Jian Wang (王剑), Shengxiang Gao (高盛祥), Zhengtao Yu (余正涛)


Abstract
“语音翻译的编码器需要同时编码语音中的声学和语义信息,单一的Fbank或Wav2vec2语音特征表征能力存在不足。本文通过分析人工的Fbank特征与自监督的Wav2vec2特征间的差异性,提出基于交叉注意力机制的声学特征融合方法,并探究了不同的自监督特征和融合方式,加强模型对语音中声学和语义信息的学习。结合越南语语音特点,以Fbank特征为主、Pitch特征为辅混合编码Fbank表征,构建多特征融合的越-英语音翻译模型。实验表明,使用多特征的语音翻译模型相比单特征翻译效果更优,与简单的特征拼接方法相比更有效,所提的多特征融合方法在越-英语音翻译任务上提升了1.97个BLEU值。”
Anthology ID:
2022.ccl-1.27
Volume:
Proceedings of the 21st Chinese National Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Nanchang, China
Editors:
Maosong Sun (孙茂松), Yang Liu (刘洋), Wanxiang Che (车万翔), Yang Feng (冯洋), Xipeng Qiu (邱锡鹏), Gaoqi Rao (饶高琦), Yubo Chen (陈玉博)
Venue:
CCL
SIG:
Publisher:
Chinese Information Processing Society of China
Note:
Pages:
293–304
Language:
Chinese
URL:
https://aclanthology.org/2022.ccl-1.27
DOI:
Bibkey:
Cite (ACL):
Houli Ma, Ling Dong, Wenjun Wang, Jian Wang, Shengxiang Gao, and Zhengtao Yu. 2022. 多特征融合的越英端到端语音翻译方法(A Vietnamese-English end-to-end speech translation method based on multi-feature fusion). In Proceedings of the 21st Chinese National Conference on Computational Linguistics, pages 293–304, Nanchang, China. Chinese Information Processing Society of China.
Cite (Informal):
多特征融合的越英端到端语音翻译方法(A Vietnamese-English end-to-end speech translation method based on multi-feature fusion) (Ma et al., CCL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.ccl-1.27.pdf