Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Predicting scalar diversity with context-driven uncertainty over alternatives

Jennifer Hu, Roger Levy, Sebastian Schuster


Abstract
Scalar implicature (SI) arises when a speaker uses an expression (e.g., “some”) that is semantically compatible with a logically stronger alternative on the same scale (e.g., “all”), leading the listener to infer that they did not intend to convey the stronger meaning. Prior work has demonstrated that SI rates are highly variable across scales, raising the question of what factors determine the SI strength for a particular scale. Here, we test the hypothesis that SI rates depend on the listener’s confidence in the underlying scale, which we operationalize as uncertainty over the distribution of possible alternatives conditioned on the context. We use a T5 model fine-tuned on a text infilling task to estimate this distribution. We find that scale uncertainty predicts human SI rates, measured as entropy over the sampled alternatives and over latent classes among alternatives in sentence embedding space. Furthermore, we do not find a significant effect of the surprisal of the strong scalemate. Our results suggest that pragmatic inferences depend on listeners’ context-driven uncertainty over alternatives.
Anthology ID:
2022.cmcl-1.8
Volume:
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
Month:
May
Year:
2022
Address:
Dublin, Ireland
Editors:
Emmanuele Chersoni, Nora Hollenstein, Cassandra Jacobs, Yohei Oseki, Laurent Prévot, Enrico Santus
Venue:
CMCL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
68–74
Language:
URL:
https://aclanthology.org/2022.cmcl-1.8
DOI:
10.18653/v1/2022.cmcl-1.8
Bibkey:
Cite (ACL):
Jennifer Hu, Roger Levy, and Sebastian Schuster. 2022. Predicting scalar diversity with context-driven uncertainty over alternatives. In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 68–74, Dublin, Ireland. Association for Computational Linguistics.
Cite (Informal):
Predicting scalar diversity with context-driven uncertainty over alternatives (Hu et al., CMCL 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.cmcl-1.8.pdf
Video:
 https://aclanthology.org/2022.cmcl-1.8.mp4