@inproceedings{rikters-miwa-2024-entity-aware,
title = "Entity-aware Multi-task Training Helps Rare Word Machine Translation",
author = "Rikters, Matiss and
Miwa, Makoto",
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-main.5",
pages = "47--54",
abstract = "Named entities (NE) are integral for preserving context and conveying accurate information in the machine translation (MT) task. Challenges often lie in handling NE diversity, ambiguity, rarity, and ensuring alignment and consistency. In this paper, we explore the effect of NE-aware model fine-tuning to improve handling of NEs in MT. We generate data for NE recognition (NER) and NE-aware MT using common NER tools from Spacy, and align entities in parallel data. Experiments with fine-tuning variations of pre-trained T5 models on NE-related generation tasks between English and German show promising results with increasing amounts of NEs in the output and BLEU score improvements compared to the non-tuned baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rikters-miwa-2024-entity-aware">
<titleInfo>
<title>Entity-aware Multi-task Training Helps Rare Word Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matiss</namePart>
<namePart type="family">Rikters</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named entities (NE) are integral for preserving context and conveying accurate information in the machine translation (MT) task. Challenges often lie in handling NE diversity, ambiguity, rarity, and ensuring alignment and consistency. In this paper, we explore the effect of NE-aware model fine-tuning to improve handling of NEs in MT. We generate data for NE recognition (NER) and NE-aware MT using common NER tools from Spacy, and align entities in parallel data. Experiments with fine-tuning variations of pre-trained T5 models on NE-related generation tasks between English and German show promising results with increasing amounts of NEs in the output and BLEU score improvements compared to the non-tuned baselines.</abstract>
<identifier type="citekey">rikters-miwa-2024-entity-aware</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-main.5</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>47</start>
<end>54</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Entity-aware Multi-task Training Helps Rare Word Machine Translation
%A Rikters, Matiss
%A Miwa, Makoto
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F rikters-miwa-2024-entity-aware
%X Named entities (NE) are integral for preserving context and conveying accurate information in the machine translation (MT) task. Challenges often lie in handling NE diversity, ambiguity, rarity, and ensuring alignment and consistency. In this paper, we explore the effect of NE-aware model fine-tuning to improve handling of NEs in MT. We generate data for NE recognition (NER) and NE-aware MT using common NER tools from Spacy, and align entities in parallel data. Experiments with fine-tuning variations of pre-trained T5 models on NE-related generation tasks between English and German show promising results with increasing amounts of NEs in the output and BLEU score improvements compared to the non-tuned baselines.
%U https://aclanthology.org/2024.inlg-main.5
%P 47-54
Markdown (Informal)
[Entity-aware Multi-task Training Helps Rare Word Machine Translation](https://aclanthology.org/2024.inlg-main.5) (Rikters & Miwa, INLG 2024)
ACL