@inproceedings{oneil-etal-2024-developing,
title = "Developing a Benchmark for Pronunciation Feedback: Creation of a Phonemically Annotated Speech Corpus of isi{Z}ulu Language Learner Speech",
author = "O{'}Neil, Alexandra and
Hjortnaes, Nils and
Tyers, Francis and
Nkosi, Zinhle and
Ndlovu, Thulile and
Mlondo, Zanele and
Pewa, Ngami Phumzile",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.429",
pages = "4795--4801",
abstract = "Pronunciation of the phonemic inventory of a new language often presents difficulties to second language (L2) learners. These challenges can be alleviated by the development of pronunciation feedback tools that take speech input from learners and return information about errors in the utterance. This paper presents the development of a corpus designed for use in pronunciation feedback research. The corpus is comprised of gold standard recordings from isiZulu teachers and recordings from isiZulu L2 learners that have been annotated for pronunciation errors. Exploring the potential benefits of word-level versus phoneme-level feedback necessitates a speech corpus that has been annotated for errors on the phoneme-level. To aid in this discussion, this corpus of isiZulu L2 speech has been annotated for phoneme-errors in utterances, as well as suprasegmental errors in tone.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="oneil-etal-2024-developing">
<titleInfo>
<title>Developing a Benchmark for Pronunciation Feedback: Creation of a Phonemically Annotated Speech Corpus of isiZulu Language Learner Speech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">O’Neil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Hjortnaes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Tyers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zinhle</namePart>
<namePart type="family">Nkosi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thulile</namePart>
<namePart type="family">Ndlovu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zanele</namePart>
<namePart type="family">Mlondo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ngami</namePart>
<namePart type="given">Phumzile</namePart>
<namePart type="family">Pewa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pronunciation of the phonemic inventory of a new language often presents difficulties to second language (L2) learners. These challenges can be alleviated by the development of pronunciation feedback tools that take speech input from learners and return information about errors in the utterance. This paper presents the development of a corpus designed for use in pronunciation feedback research. The corpus is comprised of gold standard recordings from isiZulu teachers and recordings from isiZulu L2 learners that have been annotated for pronunciation errors. Exploring the potential benefits of word-level versus phoneme-level feedback necessitates a speech corpus that has been annotated for errors on the phoneme-level. To aid in this discussion, this corpus of isiZulu L2 speech has been annotated for phoneme-errors in utterances, as well as suprasegmental errors in tone.</abstract>
<identifier type="citekey">oneil-etal-2024-developing</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.429</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>4795</start>
<end>4801</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Developing a Benchmark for Pronunciation Feedback: Creation of a Phonemically Annotated Speech Corpus of isiZulu Language Learner Speech
%A O’Neil, Alexandra
%A Hjortnaes, Nils
%A Tyers, Francis
%A Nkosi, Zinhle
%A Ndlovu, Thulile
%A Mlondo, Zanele
%A Pewa, Ngami Phumzile
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F oneil-etal-2024-developing
%X Pronunciation of the phonemic inventory of a new language often presents difficulties to second language (L2) learners. These challenges can be alleviated by the development of pronunciation feedback tools that take speech input from learners and return information about errors in the utterance. This paper presents the development of a corpus designed for use in pronunciation feedback research. The corpus is comprised of gold standard recordings from isiZulu teachers and recordings from isiZulu L2 learners that have been annotated for pronunciation errors. Exploring the potential benefits of word-level versus phoneme-level feedback necessitates a speech corpus that has been annotated for errors on the phoneme-level. To aid in this discussion, this corpus of isiZulu L2 speech has been annotated for phoneme-errors in utterances, as well as suprasegmental errors in tone.
%U https://aclanthology.org/2024.lrec-main.429
%P 4795-4801
Markdown (Informal)
[Developing a Benchmark for Pronunciation Feedback: Creation of a Phonemically Annotated Speech Corpus of isiZulu Language Learner Speech](https://aclanthology.org/2024.lrec-main.429) (O’Neil et al., LREC-COLING 2024)
ACL
- Alexandra O’Neil, Nils Hjortnaes, Francis Tyers, Zinhle Nkosi, Thulile Ndlovu, Zanele Mlondo, and Ngami Phumzile Pewa. 2024. Developing a Benchmark for Pronunciation Feedback: Creation of a Phonemically Annotated Speech Corpus of isiZulu Language Learner Speech. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 4795–4801, Torino, Italia. ELRA and ICCL.