@inproceedings{renduchintala-etal-2019-spelling,
title = "Spelling-Aware Construction of Macaronic Texts for Teaching Foreign-Language Vocabulary",
author = "Renduchintala, Adithya and
Koehn, Philipp and
Eisner, Jason",
editor = "Inui, Kentaro and
Jiang, Jing and
Ng, Vincent and
Wan, Xiaojun",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D19-1679",
doi = "10.18653/v1/D19-1679",
pages = "6438--6443",
abstract = "We present a machine foreign-language teacher that modifies text in a student{'}s native language (L1) by replacing some word tokens with glosses in a foreign language (L2), in such a way that the student can acquire L2 vocabulary simply by reading the resulting macaronic text. The machine teacher uses no supervised data from human students. Instead, to guide the machine teacher{'}s choice of which words to replace, we equip a cloze language model with a training procedure that can incrementally learn representations for novel words, and use this model as a proxy for the word guessing and learning ability of real human students. We use Mechanical Turk to evaluate two variants of the student model: (i) one that generates a representation for a novel word using only surrounding context and (ii) an extension that also uses the spelling of the novel word.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="renduchintala-etal-2019-spelling">
<titleInfo>
<title>Spelling-Aware Construction of Macaronic Texts for Teaching Foreign-Language Vocabulary</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adithya</namePart>
<namePart type="family">Renduchintala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Koehn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Eisner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Hong Kong, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a machine foreign-language teacher that modifies text in a student’s native language (L1) by replacing some word tokens with glosses in a foreign language (L2), in such a way that the student can acquire L2 vocabulary simply by reading the resulting macaronic text. The machine teacher uses no supervised data from human students. Instead, to guide the machine teacher’s choice of which words to replace, we equip a cloze language model with a training procedure that can incrementally learn representations for novel words, and use this model as a proxy for the word guessing and learning ability of real human students. We use Mechanical Turk to evaluate two variants of the student model: (i) one that generates a representation for a novel word using only surrounding context and (ii) an extension that also uses the spelling of the novel word.</abstract>
<identifier type="citekey">renduchintala-etal-2019-spelling</identifier>
<identifier type="doi">10.18653/v1/D19-1679</identifier>
<location>
<url>https://aclanthology.org/D19-1679</url>
</location>
<part>
<date>2019-11</date>
<extent unit="page">
<start>6438</start>
<end>6443</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Spelling-Aware Construction of Macaronic Texts for Teaching Foreign-Language Vocabulary
%A Renduchintala, Adithya
%A Koehn, Philipp
%A Eisner, Jason
%Y Inui, Kentaro
%Y Jiang, Jing
%Y Ng, Vincent
%Y Wan, Xiaojun
%S Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
%D 2019
%8 November
%I Association for Computational Linguistics
%C Hong Kong, China
%F renduchintala-etal-2019-spelling
%X We present a machine foreign-language teacher that modifies text in a student’s native language (L1) by replacing some word tokens with glosses in a foreign language (L2), in such a way that the student can acquire L2 vocabulary simply by reading the resulting macaronic text. The machine teacher uses no supervised data from human students. Instead, to guide the machine teacher’s choice of which words to replace, we equip a cloze language model with a training procedure that can incrementally learn representations for novel words, and use this model as a proxy for the word guessing and learning ability of real human students. We use Mechanical Turk to evaluate two variants of the student model: (i) one that generates a representation for a novel word using only surrounding context and (ii) an extension that also uses the spelling of the novel word.
%R 10.18653/v1/D19-1679
%U https://aclanthology.org/D19-1679
%U https://doi.org/10.18653/v1/D19-1679
%P 6438-6443
Markdown (Informal)
[Spelling-Aware Construction of Macaronic Texts for Teaching Foreign-Language Vocabulary](https://aclanthology.org/D19-1679) (Renduchintala et al., EMNLP-IJCNLP 2019)
ACL