@inproceedings{kajiwara-etal-2017-mipa,
title = "{MIPA}: Mutual Information Based Paraphrase Acquisition via Bilingual Pivoting",
author = "Kajiwara, Tomoyuki and
Komachi, Mamoru and
Mochihashi, Daichi",
editor = "Kondrak, Greg and
Watanabe, Taro",
booktitle = "Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2017",
address = "Taipei, Taiwan",
publisher = "Asian Federation of Natural Language Processing",
url = "https://aclanthology.org/I17-1009",
pages = "80--89",
abstract = "We present a pointwise mutual information (PMI)-based approach to formalize paraphrasability and propose a variant of PMI, called MIPA, for the paraphrase acquisition. Our paraphrase acquisition method first acquires lexical paraphrase pairs by bilingual pivoting and then reranks them by PMI and distributional similarity. The complementary nature of information from bilingual corpora and from monolingual corpora makes the proposed method robust. Experimental results show that the proposed method substantially outperforms bilingual pivoting and distributional similarity themselves in terms of metrics such as MRR, MAP, coverage, and Spearman{'}s correlation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kajiwara-etal-2017-mipa">
<titleInfo>
<title>MIPA: Mutual Information Based Paraphrase Acquisition via Bilingual Pivoting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tomoyuki</namePart>
<namePart type="family">Kajiwara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daichi</namePart>
<namePart type="family">Mochihashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Greg</namePart>
<namePart type="family">Kondrak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Asian Federation of Natural Language Processing</publisher>
<place>
<placeTerm type="text">Taipei, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a pointwise mutual information (PMI)-based approach to formalize paraphrasability and propose a variant of PMI, called MIPA, for the paraphrase acquisition. Our paraphrase acquisition method first acquires lexical paraphrase pairs by bilingual pivoting and then reranks them by PMI and distributional similarity. The complementary nature of information from bilingual corpora and from monolingual corpora makes the proposed method robust. Experimental results show that the proposed method substantially outperforms bilingual pivoting and distributional similarity themselves in terms of metrics such as MRR, MAP, coverage, and Spearman’s correlation.</abstract>
<identifier type="citekey">kajiwara-etal-2017-mipa</identifier>
<location>
<url>https://aclanthology.org/I17-1009</url>
</location>
<part>
<date>2017-11</date>
<extent unit="page">
<start>80</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MIPA: Mutual Information Based Paraphrase Acquisition via Bilingual Pivoting
%A Kajiwara, Tomoyuki
%A Komachi, Mamoru
%A Mochihashi, Daichi
%Y Kondrak, Greg
%Y Watanabe, Taro
%S Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2017
%8 November
%I Asian Federation of Natural Language Processing
%C Taipei, Taiwan
%F kajiwara-etal-2017-mipa
%X We present a pointwise mutual information (PMI)-based approach to formalize paraphrasability and propose a variant of PMI, called MIPA, for the paraphrase acquisition. Our paraphrase acquisition method first acquires lexical paraphrase pairs by bilingual pivoting and then reranks them by PMI and distributional similarity. The complementary nature of information from bilingual corpora and from monolingual corpora makes the proposed method robust. Experimental results show that the proposed method substantially outperforms bilingual pivoting and distributional similarity themselves in terms of metrics such as MRR, MAP, coverage, and Spearman’s correlation.
%U https://aclanthology.org/I17-1009
%P 80-89
Markdown (Informal)
[MIPA: Mutual Information Based Paraphrase Acquisition via Bilingual Pivoting](https://aclanthology.org/I17-1009) (Kajiwara et al., IJCNLP 2017)
ACL