@inproceedings{nogueira-dos-santos-etal-2018-fighting,
title = "Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer",
author = "Nogueira dos Santos, Cicero and
Melnyk, Igor and
Padhi, Inkit",
editor = "Gurevych, Iryna and
Miyao, Yusuke",
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P18-2031",
doi = "10.18653/v1/P18-2031",
pages = "189--194",
abstract = "We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nogueira-dos-santos-etal-2018-fighting">
<titleInfo>
<title>Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cicero</namePart>
<namePart type="family">Nogueira dos Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Igor</namePart>
<namePart type="family">Melnyk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inkit</namePart>
<namePart type="family">Padhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Miyao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.</abstract>
<identifier type="citekey">nogueira-dos-santos-etal-2018-fighting</identifier>
<identifier type="doi">10.18653/v1/P18-2031</identifier>
<location>
<url>https://aclanthology.org/P18-2031</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>189</start>
<end>194</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer
%A Nogueira dos Santos, Cicero
%A Melnyk, Igor
%A Padhi, Inkit
%Y Gurevych, Iryna
%Y Miyao, Yusuke
%S Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F nogueira-dos-santos-etal-2018-fighting
%X We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-decoders using non-parallel data that combines a collaborative classifier, attention and the cycle consistency loss. Experimental results on data from Twitter and Reddit show that our method outperforms a state-of-the-art text style transfer system in two out of three quantitative metrics and produces reliable non-offensive transferred sentences.
%R 10.18653/v1/P18-2031
%U https://aclanthology.org/P18-2031
%U https://doi.org/10.18653/v1/P18-2031
%P 189-194
Markdown (Informal)
[Fighting Offensive Language on Social Media with Unsupervised Text Style Transfer](https://aclanthology.org/P18-2031) (Nogueira dos Santos et al., ACL 2018)
ACL