@inproceedings{lindemann-etal-2019-compositional,
title = "Compositional Semantic Parsing across Graphbanks",
author = "Lindemann, Matthias and
Groschwitz, Jonas and
Koller, Alexander",
editor = "Korhonen, Anna and
Traum, David and
M{\`a}rquez, Llu{\'\i}s",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1450",
doi = "10.18653/v1/P19-1450",
pages = "4576--4585",
abstract = "Most semantic parsers that map sentences to graph-based meaning representations are hand-designed for specific graphbanks. We present a compositional neural semantic parser which achieves, for the first time, competitive accuracies across a diverse range of graphbanks. Incorporating BERT embeddings and multi-task learning improves the accuracy further, setting new states of the art on DM, PAS, PSD, AMR 2015 and EDS.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lindemann-etal-2019-compositional">
<titleInfo>
<title>Compositional Semantic Parsing across Graphbanks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Lindemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonas</namePart>
<namePart type="family">Groschwitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Traum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lluís</namePart>
<namePart type="family">Màrquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Florence, Italy</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most semantic parsers that map sentences to graph-based meaning representations are hand-designed for specific graphbanks. We present a compositional neural semantic parser which achieves, for the first time, competitive accuracies across a diverse range of graphbanks. Incorporating BERT embeddings and multi-task learning improves the accuracy further, setting new states of the art on DM, PAS, PSD, AMR 2015 and EDS.</abstract>
<identifier type="citekey">lindemann-etal-2019-compositional</identifier>
<identifier type="doi">10.18653/v1/P19-1450</identifier>
<location>
<url>https://aclanthology.org/P19-1450</url>
</location>
<part>
<date>2019-07</date>
<extent unit="page">
<start>4576</start>
<end>4585</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compositional Semantic Parsing across Graphbanks
%A Lindemann, Matthias
%A Groschwitz, Jonas
%A Koller, Alexander
%Y Korhonen, Anna
%Y Traum, David
%Y Màrquez, Lluís
%S Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
%D 2019
%8 July
%I Association for Computational Linguistics
%C Florence, Italy
%F lindemann-etal-2019-compositional
%X Most semantic parsers that map sentences to graph-based meaning representations are hand-designed for specific graphbanks. We present a compositional neural semantic parser which achieves, for the first time, competitive accuracies across a diverse range of graphbanks. Incorporating BERT embeddings and multi-task learning improves the accuracy further, setting new states of the art on DM, PAS, PSD, AMR 2015 and EDS.
%R 10.18653/v1/P19-1450
%U https://aclanthology.org/P19-1450
%U https://doi.org/10.18653/v1/P19-1450
%P 4576-4585
Markdown (Informal)
[Compositional Semantic Parsing across Graphbanks](https://aclanthology.org/P19-1450) (Lindemann et al., ACL 2019)
ACL
- Matthias Lindemann, Jonas Groschwitz, and Alexander Koller. 2019. Compositional Semantic Parsing across Graphbanks. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4576–4585, Florence, Italy. Association for Computational Linguistics.