@article{kiperwasser-goldberg-2016-easy,
title = "Easy-First Dependency Parsing with Hierarchical Tree {LSTM}s",
author = "Kiperwasser, Eliyahu and
Goldberg, Yoav",
editor = "Lee, Lillian and
Johnson, Mark and
Toutanova, Kristina",
journal = "Transactions of the Association for Computational Linguistics",
volume = "4",
year = "2016",
address = "Cambridge, MA",
publisher = "MIT Press",
url = "https://aclanthology.org/Q16-1032",
doi = "10.1162/tacl_a_00110",
pages = "445--461",
abstract = "We suggest a compositional vector representation of parse trees that relies on a recursive combination of recurrent-neural network encoders. To demonstrate its effectiveness, we use the representation as the backbone of a greedy, bottom-up dependency parser, achieving very strong accuracies for English and Chinese, without relying on external word embeddings. The parser{'}s implementation is available for download at the first author{'}s webpage.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kiperwasser-goldberg-2016-easy">
<titleInfo>
<title>Easy-First Dependency Parsing with Hierarchical Tree LSTMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eliyahu</namePart>
<namePart type="family">Kiperwasser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<genre authority="bibutilsgt">journal article</genre>
<relatedItem type="host">
<titleInfo>
<title>Transactions of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<issuance>continuing</issuance>
<publisher>MIT Press</publisher>
<place>
<placeTerm type="text">Cambridge, MA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">periodical</genre>
<genre authority="bibutilsgt">academic journal</genre>
</relatedItem>
<abstract>We suggest a compositional vector representation of parse trees that relies on a recursive combination of recurrent-neural network encoders. To demonstrate its effectiveness, we use the representation as the backbone of a greedy, bottom-up dependency parser, achieving very strong accuracies for English and Chinese, without relying on external word embeddings. The parser’s implementation is available for download at the first author’s webpage.</abstract>
<identifier type="citekey">kiperwasser-goldberg-2016-easy</identifier>
<identifier type="doi">10.1162/tacl_a_00110</identifier>
<location>
<url>https://aclanthology.org/Q16-1032</url>
</location>
<part>
<date>2016</date>
<detail type="volume"><number>4</number></detail>
<extent unit="page">
<start>445</start>
<end>461</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Journal Article
%T Easy-First Dependency Parsing with Hierarchical Tree LSTMs
%A Kiperwasser, Eliyahu
%A Goldberg, Yoav
%J Transactions of the Association for Computational Linguistics
%D 2016
%V 4
%I MIT Press
%C Cambridge, MA
%F kiperwasser-goldberg-2016-easy
%X We suggest a compositional vector representation of parse trees that relies on a recursive combination of recurrent-neural network encoders. To demonstrate its effectiveness, we use the representation as the backbone of a greedy, bottom-up dependency parser, achieving very strong accuracies for English and Chinese, without relying on external word embeddings. The parser’s implementation is available for download at the first author’s webpage.
%R 10.1162/tacl_a_00110
%U https://aclanthology.org/Q16-1032
%U https://doi.org/10.1162/tacl_a_00110
%P 445-461
Markdown (Informal)
[Easy-First Dependency Parsing with Hierarchical Tree LSTMs](https://aclanthology.org/Q16-1032) (Kiperwasser & Goldberg, TACL 2016)
ACL