@inproceedings{agarwal-dymetman-2017-surprisingly,
title = "A surprisingly effective out-of-the-box char2char model on the {E}2{E} {NLG} Challenge dataset",
author = "Agarwal, Shubham and
Dymetman, Marc",
editor = "Jokinen, Kristiina and
Stede, Manfred and
DeVault, David and
Louis, Annie",
booktitle = "Proceedings of the 18th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = aug,
year = "2017",
address = {Saarbr{\"u}cken, Germany},
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5519",
doi = "10.18653/v1/W17-5519",
pages = "158--163",
abstract = "We train a char2char model on the E2E NLG Challenge data, by exploiting {``}out-of-the-box{''} the recently released tfseq2seq framework, using some of the standard options offered by this tool. With minimal effort, and in particular without delexicalization, tokenization or lowercasing, the obtained raw predictions, according to a small scale human evaluation, are excellent on the linguistic side and quite reasonable on the adequacy side, the primary downside being the possible omissions of semantic material. However, in a significant number of cases (more than 70{\%}), a perfect solution can be found in the top-20 predictions, indicating promising directions for solving the remaining issues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agarwal-dymetman-2017-surprisingly">
<titleInfo>
<title>A surprisingly effective out-of-the-box char2char model on the E2E NLG Challenge dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Dymetman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kristiina</namePart>
<namePart type="family">Jokinen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manfred</namePart>
<namePart type="family">Stede</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">DeVault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Saarbrücken, Germany</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We train a char2char model on the E2E NLG Challenge data, by exploiting “out-of-the-box” the recently released tfseq2seq framework, using some of the standard options offered by this tool. With minimal effort, and in particular without delexicalization, tokenization or lowercasing, the obtained raw predictions, according to a small scale human evaluation, are excellent on the linguistic side and quite reasonable on the adequacy side, the primary downside being the possible omissions of semantic material. However, in a significant number of cases (more than 70%), a perfect solution can be found in the top-20 predictions, indicating promising directions for solving the remaining issues.</abstract>
<identifier type="citekey">agarwal-dymetman-2017-surprisingly</identifier>
<identifier type="doi">10.18653/v1/W17-5519</identifier>
<location>
<url>https://aclanthology.org/W17-5519</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>158</start>
<end>163</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A surprisingly effective out-of-the-box char2char model on the E2E NLG Challenge dataset
%A Agarwal, Shubham
%A Dymetman, Marc
%Y Jokinen, Kristiina
%Y Stede, Manfred
%Y DeVault, David
%Y Louis, Annie
%S Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue
%D 2017
%8 August
%I Association for Computational Linguistics
%C Saarbrücken, Germany
%F agarwal-dymetman-2017-surprisingly
%X We train a char2char model on the E2E NLG Challenge data, by exploiting “out-of-the-box” the recently released tfseq2seq framework, using some of the standard options offered by this tool. With minimal effort, and in particular without delexicalization, tokenization or lowercasing, the obtained raw predictions, according to a small scale human evaluation, are excellent on the linguistic side and quite reasonable on the adequacy side, the primary downside being the possible omissions of semantic material. However, in a significant number of cases (more than 70%), a perfect solution can be found in the top-20 predictions, indicating promising directions for solving the remaining issues.
%R 10.18653/v1/W17-5519
%U https://aclanthology.org/W17-5519
%U https://doi.org/10.18653/v1/W17-5519
%P 158-163
Markdown (Informal)
[A surprisingly effective out-of-the-box char2char model on the E2E NLG Challenge dataset](https://aclanthology.org/W17-5519) (Agarwal & Dymetman, SIGDIAL 2017)
ACL