Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Brian Davis


2024

pdf bib
Pipeline Neural Data-to-text with Large Language Models
Chinonso Cynthia Osuji | Brian Timoney | Thiago Castro Ferreira | Brian Davis
Proceedings of the 17th International Natural Language Generation Conference

Previous studies have highlighted the advantages of pipeline neural architectures over end-to-end models, particularly in reducing text hallucination. In this study, we extend prior research by integrating pretrained language models (PLMs) into a pipeline framework, using both fine-tuning and prompting methods. Our findings show that fine-tuned PLMs consistently generate high quality text, especially within end-to-end architectures and at intermediate stages of the pipeline across various domains. These models also outperform prompt-based ones on automatic evaluation metrics but lag in human evaluations. Compared to the standard five-stage pipeline architecture, a streamlined three-stage pipeline, which only include ordering, structuring, and surface realization, achieves superior performance in fluency and semantic adequacy according to the human evaluation.

pdf bib
DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation
Chinonso Cynthia Osuji | Rudali Huidrom | Kolawole John Adebayo | Thiago Castro Ferreira | Brian Davis
Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges

In this paper, we present our approach to the GEM Shared Task at the INLG’24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.

pdf bib
Imaginary Numbers! Evaluating Numerical Referring Expressions by Neural End-to-End Surface Realization Systems
Rossana Cunha | Osuji Chinonso | João Campos | Brian Timoney | Brian Davis | Fabio Cozman | Adriana Pagano | Thiago Castro Ferreira
Proceedings of the Fifth Workshop on Insights from Negative Results in NLP

Neural end-to-end surface realizers output more fluent texts than classical architectures. However, they tend to suffer from adequacy problems, in particular hallucinations in numerical referring expression generation. This poses a problem to language generation in sensitive domains, as is the case of robot journalism covering COVID-19 and Amazon deforestation. We propose an approach whereby numerical referring expressions are converted from digits to plain word form descriptions prior to being fed to state-of-the-art Large Language Models. We conduct automatic and human evaluations to report the best strategy to numerical superficial realization. Code and data are publicly available.

pdf bib
Beyond Binary: Towards Embracing Complexities in Cyberbullying Detection and Intervention - a Position Paper
Kanishk Verma | Kolawole John Adebayo | Joachim Wagner | Megan Reynolds | Rebecca Umbach | Tijana Milosevic | Brian Davis
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

In the digital age, cyberbullying (CB) poses a significant concern, impacting individuals as early as primary school and leading to severe or lasting consequences, including an increased risk of self-harm. CB incidents, are not limited to bullies and victims, but include bystanders with various roles, and usually have numerous sub-categories and variations of online harms. This position paper emphasises the complexity of CB incidents by drawing on insights from psychology, social sciences, and computational linguistics. While awareness of CB complexities is growing, existing computational techniques tend to oversimplify CB as a binary classification task, often relying on training datasets that capture peripheries of CB behaviours. Inconsistent definitions and categories of CB-related online harms across various platforms further complicates the issue. Ethical concerns arise when CB research involves children to role-play CB incidents to curate datasets. Through multi-disciplinary collaboration, we propose strategies for consideration when developing CB detection systems. We present our position on leveraging large language models (LLMs) such as Claude-2 and Llama2-Chat as an alternative approach to generate CB-related role-playing datasets. Our goal is to assist researchers, policymakers, and online platforms in making informed decisions regarding the automation of CB incident detection and intervention. By addressing these complexities, our research contributes to a more nuanced and effective approach to combating CB especially in young people.

2023

pdf bib
DCU/TCD-FORGe at WebNLG’23: Irish rules! (WegNLG 2023)
Simon Mille | Elaine Uí Dhonnchadha | Stamatia Dasiopoulou | Lauren Cassidy | Brian Davis | Anya Belz
Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation and Multilingual WebNLG Challenge (MM-NLG 2023)

In this paper, we describe the submission of Dublin City University (DCU) and Trinity College Dublin (TCD) for the WebNLG 2023 shared task. We present a fully rule-based pipeline for generating Irish texts from DBpedia triple sets which comprises 4 components: triple lexicalisation, generation of noninflected Irish text, inflection generation, and post-processing.

pdf bib
Generating Irish Text with a Flexible Plug-and-Play Architecture
Simon Mille | Elaine Uí Dhonnchadha | Lauren Cassidy | Brian Davis | Stamatia Dasiopoulou | Anya Belz
Proceedings of the 2nd Workshop on Pattern-based Approaches to NLP in the Age of Deep Learning

In this paper, we describe M-FleNS, a multilingual flexible plug-and-play architecture designed to accommodate neural and symbolic modules, and initially instantiated with rule-based modules. We focus on using M-FleNS for the specific purpose of building new resources for Irish, a language currently under-represented in the NLP landscape. We present the general M-FleNS framework and how we use it to build an Irish Natural Language Generation system for verbalising part of the DBpedia ontology and building a multilayered dataset with rich linguistic annotations. Via automatic and human assessments of the output texts we show that with very limited resources we are able to create a system that reaches high levels of fluency and semantic accuracy, while having very low energy and memory requirements.

pdf bib
DCU at SemEval-2023 Task 10: A Comparative Analysis of Encoder-only and Decoder-only Language Models with Insights into Interpretability
Kanishk Verma | Kolawole Adebayo | Joachim Wagner | Brian Davis
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

We conduct a comparison of pre-trained encoder-only and decoder-only language models with and without continued pre-training, to detect online sexism. Our fine-tuning-based classifier system achieved the 16th rank in the SemEval 2023 Shared Task 10 Subtask A that asks to distinguish sexist and non-sexist texts. Additionally, we conduct experiments aimed at enhancing the interpretability of systems designed to detect online sexism. Our findings provide insights into the features and decision-making processes underlying our classifier system, thereby contributing to a broader effort to develop explainable AI models to detect online sexism.

2022

pdf bib
Proceedings of the First Workshop on Language Technology and Resources for a Fair, Inclusive, and Safe Society within the 13th Language Resources and Evaluation Conference
Kolawole Adebayo | Rohan Nanda | Kanishk Verma | Brian Davis
Proceedings of the First Workshop on Language Technology and Resources for a Fair, Inclusive, and Safe Society within the 13th Language Resources and Evaluation Conference

pdf bib
Benchmarking Language Models for Cyberbullying Identification and Classification from Social-media Texts
Kanishk Verma | Tijana Milosevic | Keith Cortis | Brian Davis
Proceedings of the First Workshop on Language Technology and Resources for a Fair, Inclusive, and Safe Society within the 13th Language Resources and Evaluation Conference

Cyberbullying is bullying perpetrated via the medium of modern communication technologies like social media networks and gaming platforms. Unfortunately, most existing datasets focusing on cyberbullying detection or classification are i) limited in number ii) usually targeted to one specific online social networking (OSN) platform, or iii) often contain low-quality annotations. In this study, we fine-tune and benchmark state of the art neural transformers for the binary classification of cyberbullying in social media texts, which is of high value to Natural Language Processing (NLP) researchers and computational social scientists. Furthermore, this work represents the first step toward building neural language models for cross OSN platform cyberbullying classification to make them as OSN platform agnostic as possible.

pdf bib
Baseline English and Maltese-English Classification Models for Subjectivity Detection, Sentiment Analysis, Emotion Analysis, Sarcasm Detection, and Irony Detection
Keith Cortis | Brian Davis
Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages

This paper presents baseline classification models for subjectivity detection, sentiment analysis, emotion analysis, sarcasm detection, and irony detection. All models are trained on user-generated content gathered from newswires and social networking services, in three different languages: English —a high-resourced language, Maltese —a low-resourced language, and Maltese-English —a code-switched language. Traditional supervised algorithms namely, Support Vector Machines, Naïve Bayes, Logistic Regression, Decision Trees, and Random Forest, are used to build a baseline for each classification task, namely subjectivity, sentiment polarity, emotion, sarcasm, and irony. Baseline models are established at a monolingual (English) level and at a code-switched level (Maltese-English). Results obtained from all the classification models are presented.

pdf bib
Can Attention-based Transformers Explain or Interpret Cyberbullying Detection?
Kanishk Verma | Tijana Milosevic | Brian Davis
Proceedings of the Third Workshop on Threat, Aggression and Cyberbullying (TRAC 2022)

Automated textual cyberbullying detection is known to be a challenging task. It is sometimes expected that messages associated with bullying will either be a) abusive, b) targeted at a specific individual or group, or c) have a negative sentiment. Transfer learning by fine-tuning pre-trained attention-based transformer language models (LMs) has achieved near state-of-the-art (SOA) precision in identifying textual fragments as being bullying-related or not. This study looks closely at two SOA LMs, BERT and HateBERT, fine-tuned on real-life cyberbullying datasets from multiple social networking platforms. We intend to determine whether these finely calibrated pre-trained LMs learn textual cyberbullying attributes or syntactical features in the text. The results of our comprehensive experiments show that despite the fact that attention weights are drawn more strongly to syntactical features of the text at every layer, attention weights cannot completely account for the decision-making of such attention-based transformers.

2021

pdf bib
LUX (Linguistic aspects Under eXamination): Discourse Analysis for Automatic Fake News Classification
Lucas Azevedo | Mathieu d’Aquin | Brian Davis | Manel Zarrouk
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Enriching the E2E dataset
Thiago Castro Ferreira | Helena Vaz | Brian Davis | Adriana Pagano
Proceedings of the 14th International Conference on Natural Language Generation

This study introduces an enriched version of the E2E dataset, one of the most popular language resources for data-to-text NLG. We extract intermediate representations for popular pipeline tasks such as discourse ordering, text structuring, lexicalization and referring expression generation, enabling researchers to rapidly develop and evaluate their data-to-text pipeline systems. The intermediate representations are extracted by aligning non-linguistic and text representations through a process called delexicalization, which consists in replacing input referring expressions to entities/attributes with placeholders. The enriched dataset is publicly available.

pdf bib
Another PASS: A Reproduction Study of the Human Evaluation of a Football Report Generation System
Simon Mille | Thiago Castro Ferreira | Anya Belz | Brian Davis
Proceedings of the 14th International Conference on Natural Language Generation

This paper reports results from a reproduction study in which we repeated the human evaluation of the PASS Dutch-language football report generation system (van der Lee et al., 2017). The work was carried out as part of the ReproGen Shared Task on Reproducibility of Human Evaluations in NLG, in Track A (Paper 1). We aimed to repeat the original study exactly, with the main difference that a different set of evaluators was used. We describe the study design, present the results from the original and the reproduction study, and then compare and analyse the differences between the two sets of results. For the two ‘headline’ results of average Fluency and Clarity, we find that in both studies, the system was rated more highly for Clarity than for Fluency, and Clarity had higher standard deviation. Clarity and Fluency ratings were higher, and their standard deviations lower, in the reproduction study than in the original study by substantial margins. Clarity had a higher degree of reproducibility than Fluency, as measured by the coefficient of variation. Data and code are publicly available.

pdf bib
Fine-tuning Neural Language Models for Multidimensional Opinion Mining of English-Maltese Social Data
Keith Cortis | Kanishk Verma | Brian Davis
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

This paper presents multidimensional Social Opinion Mining on user-generated content gathered from newswires and social networking services in three different languages: English —a high-resourced language, Maltese —a low-resourced language, and Maltese-English —a code-switched language. Multiple fine-tuned neural classification language models which cater for the i) English, Maltese and Maltese-English languages as well as ii) five different social opinion dimensions, namely subjectivity, sentiment polarity, emotion, irony and sarcasm, are presented. Results per classification model for each social opinion dimension are discussed.

2020

pdf bib
Toward the Automatic Retrieval and Annotation of Outsider Art images: A Preliminary Statement
John Roberto | Diego Ortego | Brian Davis
Proceedings of the 1st International Workshop on Artificial Intelligence for Historical Image Enrichment and Access

The aim of this position paper is to establish an initial approach to the automatic classification of digital images about the Outsider Art style of painting. Specifically, we explore whether is it possible to classify non-traditional artistic styles by using the same features that are used for classifying traditional styles? Our research question is motivated by two facts. First, art historians state that non-traditional styles are influenced by factors “outside” of the world of art. Second, some studies have shown that several artistic styles confound certain classification techniques. Following current approaches to style prediction, this paper utilises Deep Learning methods to encode image features. Our preliminary experiments have provided motivation to think that, as is the case with traditional styles, Outsider Art can be computationally modelled with objective means by using training datasets and CNN models. Nevertheless, our results are not conclusive due to the lack of a large available dataset on Outsider Art. Therefore, at the end of the paper, we have mapped future lines of action, which include the compilation of a large dataset of Outsider Art images and the creation of an ontology of Outsider Art.

pdf bib
Proceedings of the 13th International Conference on Natural Language Generation
Brian Davis | Yvette Graham | John Kelleher | Yaji Sripada
Proceedings of the 13th International Conference on Natural Language Generation

pdf bib
Towards the Ontologization of the Outsider Art Domain: Position Paper
John Roberto | Brian Davis
Proceedings of the 16th Joint ACL-ISO Workshop on Interoperable Semantic Annotation

The purpose of this paper is to present a prospective and interdisciplinary research project seeking to ontologize knowledge of the domain of Outsider Art, that is, the art created outside the boundaries of official culture. The goal is to combine ontology engineering methodologies to develop a knowledge base which i) examines the relation between social exclusion and cultural productions, ii) standardizes the terminology of Outsider Art and iii) enables semantic interoperability between cultural metadata relevant to Outsider Art. The Outsider Art ontology will integrate some existing ontologies and terminologies, such as the CIDOC - Conceptual Reference Model (CRM), the Art & Architecture Thesaurus and the Getty Union List of Artist Names, among other resources. Natural Language Processing and Machine Learning techniques will be fundamental instruments for knowledge acquisition and elicitation. NLP techniques will be used to annotate bibliographies of relevant outsider artists and descriptions of outsider artworks with linguistic information. Machine Learning techniques will be leveraged to acquire knowledge from linguistic features embedded in both types of texts.

2019

pdf bib
A Social Opinion Gold Standard for the Malta Government Budget 2018
Keith Cortis | Brian Davis
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

We present a gold standard of annotated social opinion for the Malta Government Budget 2018. It consists of over 500 online posts in English and/or the Maltese less-resourced language, gathered from social media platforms, specifically, social networking services and newswires, which have been annotated with information about opinions expressed by the general public and other entities, in terms of sentiment polarity, emotion, sarcasm/irony, and negation. This dataset is a resource for opinion mining based on social data, within the context of politics. It is the first opinion annotated social dataset from Malta, which has very limited language resources available.

pdf bib
CoSACT: A Collaborative Tool for Fine-Grained Sentiment Annotation and Consolidation of Text
Tobias Daudert | Manel Zarrouk | Brian Davis
Proceedings of the First Workshop on Financial Technology and Natural Language Processing

2018

pdf bib
FinSentiA: Sentiment Analysis in English Financial Microblogs
Thomas Gaillat | Annanda Sousa | Manel Zarrouk | Brian Davis
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

FinSentiA: Sentiment Analysis in English Financial Microblogs The objective of this paper is to report on the building of a Sentiment Analysis (SA) system dedicated to financial microblogs in English. The purpose of our work is to build a financial classifier that predicts the sentiment of stock investors in microblog platforms such as StockTwits and Twitter. Our contribution shows that it is possible to conduct such tasks in order to provide fine grained SA of financial microblogs. We extracted financial entities with relevant contexts and assigned scores on a continuous scale by adopting a deep learning method for the classification.

pdf bib
Indra: A Word Embedding and Semantic Relatedness Server
Juliano Efson Sales | Leonardo Souza | Siamak Barzegar | Brian Davis | André Freitas | Siegfried Handschuh
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
A Multilingual Test Collection for the Semantic Search of Entity Categories
Juliano Efson Sales | Siamak Barzegar | Wellington Franco | Bernhard Bermeitinger | Tiago Cunha | Brian Davis | André Freitas | Siegfried Handschuh
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
The SSIX Corpora: Three Gold Standard Corpora for Sentiment Analysis in English, Spanish and German Financial Microblogs
Thomas Gaillat | Manel Zarrouk | André Freitas | Brian Davis
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
SemR-11: A Multi-Lingual Gold-Standard for Semantic Similarity and Relatedness for Eleven Languages
Siamak Barzegar | Brian Davis | Manel Zarrouk | Siegfried Handschuh | Andre Freitas
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Implicit and Explicit Aspect Extraction in Financial Microblogs
Thomas Gaillat | Bernardo Stearns | Gopal Sridhar | Ross McDermott | Manel Zarrouk | Brian Davis
Proceedings of the First Workshop on Economics and Natural Language Processing

This paper focuses on aspect extraction which is a sub-task of Aspect-based Sentiment Analysis. The goal is to report an extraction method of financial aspects in microblog messages. Our approach uses a stock-investment taxonomy for the identification of explicit and implicit aspects. We compare supervised and unsupervised methods to assign predefined categories at message level. Results on 7 aspect classes show 0.71 accuracy, while the 32 class classification gives 0.82 accuracy for messages containing explicit aspects and 0.35 for implicit aspects.

2017

pdf bib
SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs and News
Keith Cortis | André Freitas | Tobias Daudert | Manuela Huerlimann | Manel Zarrouk | Siegfried Handschuh | Brian Davis
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper discusses the “Fine-Grained Sentiment Analysis on Financial Microblogs and News” task as part of SemEval-2017, specifically under the “Detecting sentiment, humour, and truth” theme. This task contains two tracks, where the first one concerns Microblog messages and the second one covers News Statements and Headlines. The main goal behind both tracks was to predict the sentiment score for each of the mentioned companies/stocks. The sentiment scores for each text instance adopted floating point values in the range of -1 (very negative/bearish) to 1 (very positive/bullish), with 0 designating neutral sentiment. This task attracted a total of 32 participants, with 25 participating in Track 1 and 29 in Track 2.

2016

pdf bib
A Compositional-Distributional Semantic Model for Searching Complex Entity Categories
Juliano Efson Sales | André Freitas | Brian Davis | Siegfried Handschuh
Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics

pdf bib
Semantic Relation Classification: Task Formalisation and Refinement
Vivian Santos | Manuela Huerliman | Brian Davis | Siegfried Handschuh | André Freitas
Proceedings of the 5th Workshop on Cognitive Aspects of the Lexicon (CogALex - V)

The identification of semantic relations between terms within texts is a fundamental task in Natural Language Processing which can support applications requiring a lightweight semantic interpretation model. Currently, semantic relation classification concentrates on relations which are evaluated over open-domain data. This work provides a critique on the set of abstract relations used for semantic relation classification with regard to their ability to express relationships between terms which are found in a domain-specific corpora. Based on this analysis, this work proposes an alternative semantic relation model based on reusing and extending the set of abstract relations present in the DOLCE ontology. The resulting set of relations is well grounded, allows to capture a wide range of relations and could thus be used as a foundation for automatic classification of semantic relations.

2014

pdf bib
Proceedings of the Third Workshop on Semantic Web and Information Extraction
Diana Maynard | Marieke van Erp | Brian Davis
Proceedings of the Third Workshop on Semantic Web and Information Extraction

2013

pdf bib
Proceedings of the Joint Workshop on NLP&LOD and SWAIE: Semantic Web, Linked Open Data and Information Extraction
Diana Maynard | Marieke van Erp | Brian Davis | Petya Osenova | Kiril Simov | Georgi Georgiev | Preslav Nakov
Proceedings of the Joint Workshop on NLP&LOD and SWAIE: Semantic Web, Linked Open Data and Information Extraction

2010

pdf bib
Classifying Action Items for Semantic Email
Simon Scerri | Gerhard Gossen | Brian Davis | Siegfried Handschuh
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

Email can be considered as a virtual working environment in which users are constantly struggling to manage the vast amount of exchanged data. Although most of this data belongs to well-defined workflows, these are implicit and largely unsupported by existing email clients. Semanta provides this support by enabling Semantic Email ― email enhanced with machine-processable metadata about specific types of email Action Items (e.g. Task Assignment, Meeting Proposal). In the larger picture, these items form part of ad-hoc workflows (e.g. Task Delegation, Meeting Scheduling). Semanta is faced with a knowledge-acquisition bottleneck, as users cannot be expected to annotate each action item, and their automatic recognition proves difficult. This paper focuses on applying computationally treatable aspects of speech act theory for the classification of email action items. A rule-based classification model is employed, based on the presence or form of a number of linguistic features. The technology’s evaluation suggests that whereas full automation is not feasible, the results are good enough to be presented as suggestions for the user to review. In addition the rule-based system will bootstrap a machine learning system that is currently in development, to generate the initial training sets which are then improved through the user’s reviewing.

pdf bib
A Use Case for Controlled Languages as Interfaces to Semantic Web Applications
Pradeep Dantuluri | Brian Davis | Siegfried Handschuh
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

Although the Semantic web is steadily gaining in popularity, it remains a mystery to a large percentage of Internet users. This can be attributed to the complexity of the technologies that form its core. Creating intuitive interfaces which completely abstract the technologies underneath, is one way to solve this problem. A contrasting approach is to ease the user into understanding the technologies. We propose a solution which anchors on using controlled languages as interfaces to semantic web applications. This paper describes one such approach for the domain of meeting minutes, status reports and other project specific documents. A controlled language is developed along with an ontology to handle semi-automatic knowledge extraction. The contributions of this paper include an ontology designed for the domain of meeting minutes and status reports, and a controlled language grammar tailored for the above domain to perform the semi-automatic knowledge acquisition and generate RDF triples. This paper also describes two grammar prototypes, which were developed and evaluated prior to the development of the final grammar, as well as the Link grammar, which was the grammar formalism of choice.

2008

pdf bib
Evaluating the Ontology underlying sMail - the Conceptual Framework for Semantic Email Communication
Simon Scerri | Myriam Mencke | Brian Davis | Siegfried Handschuh
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

The lack of structure in the content of email messages makes it very hard for data channelled between the sender and the recipient to be correctly interpreted and acted upon. As a result, the purposes of messages frequently end up not being fulfilled, prompting prolonged communication and stalling the disconnected workflow that is characteristic of email. This problem could be partially solved by extending the current email model to support light-weight semantics pertaining to the intents of the sender and the expectations from the recipient(s), thus leaving no room for ambiguity. Semantically-aware email clients will then be able to support the user with the workflow of email-generated tasks. In line with this thinking, we present the sMail Conceptual Framework. At its core, this framework has an Email Speech Act Model. Given this model, email content can be categorized into a set of speech acts, each carrying specific expectations. In this paper we present and discuss the methodology and results of this model?s statistical evaluation. By performing the same evaluation on another existing model, we demonstrate our model?s higher sophistication. After careful observations, we perform changes to the model and subsequently accommodate the changes in the revised sMail Conceptual Framework.

pdf bib
Linguistically Light Lexical Extensions for Ontologies
Brian Davis | Siegfried Handschuh | Alexander Troussov | John Judge | Mikhail Sogrin
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

The identification of class instances within unstructured text for either the purposes of Ontology population or semantic annotation are usually limited to term mentions of Proper Noun and Personal Noun or fixed Key Phrases within Text Analytics or Ontology based Information Extraction(OBIE) applications. These systems do not generalize to cope with compound nominal classes of multi word expressions. Computational Linguistics’ approaches involving deep analysis tend to suffer from idiomaticity and overgeneration problems while the shallower “words with spaces” approach frequently employed in Information Extraction(IE) and Industrial Text Analytics systems lacks flexibility and is prone to lexical proliferation. We outline a representation for encoding light linguistic features of Compound Nominal term mentions of Concepts within an Ontology as well as a lightweight semantic annotator which complies the above linguistic information into efficient Dictionary formats to drive large scale identification and semantic annotation of the aforementioned concepts.