Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Calibration of a SIR (Susceptibles–Infected–Recovered) model with official international data for the COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly considers the role and the relevance of data. Together with a physical vision of the model, the present work addresses numerically the issue of parameters calibration in SIR models, it discusses the uncertainties in the data provided by international authorities, how they influence the reliability of calibrated model parameters and, ultimately, of model predictions.

Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic / A. Comunian, R. Gaburro, M. Giudici. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 413:(2020 Dec), pp. 132674.1-132674.13. [10.1016/j.physd.2020.132674]

Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic

A. Comunian
Primo
;
M. Giudici
Ultimo
2020

Abstract

Calibration of a SIR (Susceptibles–Infected–Recovered) model with official international data for the COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly considers the role and the relevance of data. Together with a physical vision of the model, the present work addresses numerically the issue of parameters calibration in SIR models, it discusses the uncertainties in the data provided by international authorities, how they influence the reliability of calibrated model parameters and, ultimately, of model predictions.
Inverse problems; SIR models; COVID-19;
Settore GEO/12 - Oceanografia e Fisica dell'Atmosfera
Settore GEOS-04/C - Oceanografia, meteorologia e climatologia
dic-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
124 Comunian et al 2020.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
COVID19_Physica-D.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 908.63 kB
Formato Adobe PDF
908.63 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/808618
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 70
social impact