Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Calibration of a SIR (Susceptibles–Infected–Recovered) model with official international data for the COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly considers the role and the relevance of data. Together with a physical vision of the model, the present work addresses numerically the issue of parameters calibration in SIR models, it discusses the uncertainties in the data provided by international authorities, how they influence the reliability of calibrated model parameters and, ultimately, of model predictions.

Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic / A. Comunian, R. Gaburro, M. Giudici. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 413(2020), pp. 132674.1-132674.13.

Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic

A. Comunian;M. Giudici
2020

Abstract

Calibration of a SIR (Susceptibles–Infected–Recovered) model with official international data for the COVID-19 pandemics provides a good example of the difficulties inherent in the solution of inverse problems. Inverse modeling is set up in a framework of discrete inverse problems, which explicitly considers the role and the relevance of data. Together with a physical vision of the model, the present work addresses numerically the issue of parameters calibration in SIR models, it discusses the uncertainties in the data provided by international authorities, how they influence the reliability of calibrated model parameters and, ultimately, of model predictions.
Inverse problems; SIR models; COVID-19
Settore GEO/12 - Oceanografia e Fisica dell'Atmosfera
2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
124 Comunian et al 2020.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
COVID19_Physica-D.pdf

accesso riservato

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 908.63 kB
Formato Adobe PDF
908.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/808618
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 66
social impact