Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 10 Sep 2024]
Title:Optimal Workload Placement on Multi-Instance GPUs
View PDF HTML (experimental)Abstract:There is an urgent and pressing need to optimize usage of Graphical Processing Units (GPUs), which have arguably become one of the most expensive and sought after IT resources. To help with this goal, several of the current generation of GPUs support a partitioning feature, called Multi-Instance GPU (MIG) to allow multiple workloads to share a GPU, albeit with some constraints. In this paper we investigate how to optimize the placement of Large Language Model (LLM)-based AI Inferencing workloads on GPUs. We first identify and present several use cases that are encountered in practice that require workloads to be efficiently placed or migrated to other GPUs to make room for incoming workloads. The overarching goal is to use as few GPUs as possible and to further minimize memory and compute wastage on GPUs that are utilized. We have developed two approaches to address this problem: an optimization method and a heuristic method. We benchmark these with two workload scheduling heuristics for multiple use cases. Our results show up to 2.85x improvement in the number of GPUs used and up to 70% reduction in GPU wastage over baseline heuristics. We plan to enable the SRE community to leverage our proposed method in production environments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.