Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

    Jesper Mosbacher

    The nutritional state of animals is tightly linked to the ambient environment, and for northern ungulates the state strongly influences vital population demographics, such as pregnancy rates. Continuously growing tissues, such as hair,... more
    The nutritional state of animals is tightly linked to the ambient environment, and for northern ungulates the state strongly influences vital population demographics, such as pregnancy rates. Continuously growing tissues, such as hair, can be viewed as dietary records of animals over longer temporal scales. Using sequential data on nitrogen stable isotopes (δ15N) in muskox guard hairs from ten individuals in high arctic Northeast Greenland, we were able to reconstruct the dietary history of muskoxen over approximately 2.5 years with a high temporal resolution of app. 9 days. The dietary chronology included almost three full summer and winter periods. The diet showed strong intra- and inter-annual seasonality, and was significantly linked to changes in local environmental conditions (temperature and snow depth). The summer diets were highly similar across years, reflecting a graminoid-dominated diet. In contrast, winter diets were markedly different between years, a pattern apparently linked to snow conditions. Snow-rich winters had markedly higher δ15N values than snow-poor winters, indicating that muskoxen had limited access to forage, and relied more heavily on their body stores. Due to the close link between body stores and calf production in northern ungulates, the dietary winter signals could eventually serve as an indicator of calf production the following spring. Our study opens the field for further studies and longer chronologies to test such links. The method of sequential stable isotope analysis of guard hairs thus constitutes a promising candidate for population-level monitoring of animals in remote, arctic areas.
    ABSTRACT Arctic plants and herbivores are subject to ongoing climatic changes that are more rapid and extreme than elsewhere on the planet, and thus it is pivotal to understand the arctic plant-herbivore interactions in a global change... more
    ABSTRACT Arctic plants and herbivores are subject to ongoing climatic changes that are more rapid and extreme than elsewhere on the planet, and thus it is pivotal to understand the arctic plant-herbivore interactions in a global change context. We examined how infestation by an eriophyoid gall mite affects the circumpolar shrub Salix arctica, and how the effects vary across vegetation types. Specifically, we compared multiple leaf characteristics (leaf area, biomass, nutrient levels, δ15N and δ13C, and stress and performance of the photosynthetic apparatus) of infested leaves to those of un-infested leaves. Furthermore, we examined how altered environmental conditions, here experimentally manipulated levels of temperature, water and nutrients, shading, and UV-B radiation, affect the prevalence, density, and intensity of gall mite infestation and its impacts on S. arctica. Infested leaves were smaller in area and biomass and had lower nitrogen and carbon pools. However, their carbon concentration was higher, possibly because the galls acted as carbon sinks. The smaller photosynthetic area and lower nutrient content caused increased stress on the photosynthetic apparatus in infested leaves. The remaining leaf tissue responded with a higher photosynthetic performance, although there were indications of a general reduction in photosynthesis. Female leaves were more affected than male leaves. The experimental manipulations of environmental conditions did not affect the gall prevalence, density, or intensity on S. arctica leaves. Rather, plants responded positively to the treatments, reducing the effects of the galls to in-significance. This suggests a higher tolerance and defense against gall mites under future climate conditions.
    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how... more
    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land–atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.
    Research Interests: