The impact of underwater noise on marine life calls for identification of exposure criteria to in... more The impact of underwater noise on marine life calls for identification of exposure criteria to inform mitigation. Here we review recent experimental evidence with focus on the high-frequency cetaceans and discuss scientifically-based initial exposure criteria. A range of new TTS experiments suggest that harbour and finless porpoises are more sensitive to sound than expected from extrapolations based on results from bottlenose dolphins. Furthermore, the results from TTS experiments and field studies of behavioural reactions to noise, suggest that response thresholds and TTS critically depend on stimulus frequency. Sound exposure levels for pure tones that induce TTS are reasonably consistent at about 100 dB above the hearing threshold for pure tones and sound pressure thresholds for avoidance reactions are in the range of 40–50 dB above the hearing threshold. We propose that frequency weighting with a filter function approximating the inversed audiogram might be appropriate when assessing impact.
Advances in Experimental Medicine and Biology, 2016
Management of the impact of underwater sound is an emerging concern worldwide. Several countries ... more Management of the impact of underwater sound is an emerging concern worldwide. Several countries are in the process of implementing regulatory legislations. In Europe, the Marine Strategy Framework Directive was launched in 2008. This framework addresses noise impacts and the recommendation is to deal with it on a regional level. The Baltic Sea is a semienclosed area with nine states bordering the sea. The number of ships is one of the highest in Europe. Furthermore, the number of ships is estimated to double by 2030. Undoubtedly, due to the unbound character of noise, an efficient management of sound in the Baltic Sea must be done on a regional scale. In line with the European Union directive, the Baltic Sea Information on the Acoustic Soundscape (BIAS) project was established to implement Descriptor 11 of the Marine Strategy Framework Directive in the Baltic Sea region. BIAS will develop tools, standards, and methodologies that will allow for cross-border handling of data and results, measure sound in 40 locations for 1 year, establish a seasonal soundscape map by combining measured sound with advanced three-dimensional modeling, and, finally, establish standards for measuring continuous sound. Results from the first phase of BIAS are presented here, with an emphasis on standards and soundscape mapping as well as the challenges related to regional handling.
Advances in experimental medicine and biology, 2016
We estimated the long-range effects of air gun array noise on marine mammal communication ranges ... more We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted. A leaky integrator was used as a hearing model to assess communication masking in three species due to intermittent/continuous air gun sounds. Air gun noise is most probably changing from impulse to continuous noise between 1,000 and 2,000 km from the source, leading to a reduced communication range for, e.g., blue and fin whales up to 2,000 km from the source.
Advances in experimental medicine and biology, 2016
The project conducts application-oriented research on impacts of underwater noise on marine verte... more The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise from pile driving and stress reactions caused by anthropogenic noise is investigated. Animals are equipped with DTAGs capable of recording the actual surrounding noise field of free-swimming harbor porpoises and seals. Acoustic noise mapping including porpoise detectors in the Natura 2000 sites of the North and Baltic Seas will help to fully understand current noise impacts.
Wideband sound recordings were made of underwater noise emitted by an active drillship, Stena For... more Wideband sound recordings were made of underwater noise emitted by an active drillship, Stena Forth, working in 484 m of water in Baffin Bay, western Greenland. The recordings were obtained at thirty and one-hundred meters depth. Noise was recorded during both drilling and maintenance work at ranges from 500 m to 38 km. The emitted noise levels were highest during maintenance work with estimated source levels up to 190 dB re 1 μPa (rms), while the source level during drilling was 184 dB re 1 μPa (rms). There were spectral peaks discernible from the background noise to ranges of at least 38 km from the drillship with the main energy below 3 kHz. M-weighted sound pressure levels were virtually identical to broadband levels for low-frequency cetaceans and about 5 dB lower for high-frequency cetaceans. Signals from the dynamic positioning system were clearly detectable at ranges up to two km from the drillship.
The impact of underwater noise on marine life calls for identification of exposure criteria to in... more The impact of underwater noise on marine life calls for identification of exposure criteria to inform mitigation. Here we review recent experimental evidence with focus on the high-frequency cetaceans and discuss scientifically-based initial exposure criteria. A range of new TTS experiments suggest that harbour and finless porpoises are more sensitive to sound than expected from extrapolations based on results from bottlenose dolphins. Furthermore, the results from TTS experiments and field studies of behavioural reactions to noise, suggest that response thresholds and TTS critically depend on stimulus frequency. Sound exposure levels for pure tones that induce TTS are reasonably consistent at about 100 dB above the hearing threshold for pure tones and sound pressure thresholds for avoidance reactions are in the range of 40–50 dB above the hearing threshold. We propose that frequency weighting with a filter function approximating the inversed audiogram might be appropriate when assessing impact.
Advances in Experimental Medicine and Biology, 2016
Management of the impact of underwater sound is an emerging concern worldwide. Several countries ... more Management of the impact of underwater sound is an emerging concern worldwide. Several countries are in the process of implementing regulatory legislations. In Europe, the Marine Strategy Framework Directive was launched in 2008. This framework addresses noise impacts and the recommendation is to deal with it on a regional level. The Baltic Sea is a semienclosed area with nine states bordering the sea. The number of ships is one of the highest in Europe. Furthermore, the number of ships is estimated to double by 2030. Undoubtedly, due to the unbound character of noise, an efficient management of sound in the Baltic Sea must be done on a regional scale. In line with the European Union directive, the Baltic Sea Information on the Acoustic Soundscape (BIAS) project was established to implement Descriptor 11 of the Marine Strategy Framework Directive in the Baltic Sea region. BIAS will develop tools, standards, and methodologies that will allow for cross-border handling of data and results, measure sound in 40 locations for 1 year, establish a seasonal soundscape map by combining measured sound with advanced three-dimensional modeling, and, finally, establish standards for measuring continuous sound. Results from the first phase of BIAS are presented here, with an emphasis on standards and soundscape mapping as well as the challenges related to regional handling.
Advances in experimental medicine and biology, 2016
We estimated the long-range effects of air gun array noise on marine mammal communication ranges ... more We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi-continuous sound. Propagation modeling to estimate the received waveform was conducted. A leaky integrator was used as a hearing model to assess communication masking in three species due to intermittent/continuous air gun sounds. Air gun noise is most probably changing from impulse to continuous noise between 1,000 and 2,000 km from the source, leading to a reduced communication range for, e.g., blue and fin whales up to 2,000 km from the source.
Advances in experimental medicine and biology, 2016
The project conducts application-oriented research on impacts of underwater noise on marine verte... more The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise from pile driving and stress reactions caused by anthropogenic noise is investigated. Animals are equipped with DTAGs capable of recording the actual surrounding noise field of free-swimming harbor porpoises and seals. Acoustic noise mapping including porpoise detectors in the Natura 2000 sites of the North and Baltic Seas will help to fully understand current noise impacts.
Wideband sound recordings were made of underwater noise emitted by an active drillship, Stena For... more Wideband sound recordings were made of underwater noise emitted by an active drillship, Stena Forth, working in 484 m of water in Baffin Bay, western Greenland. The recordings were obtained at thirty and one-hundred meters depth. Noise was recorded during both drilling and maintenance work at ranges from 500 m to 38 km. The emitted noise levels were highest during maintenance work with estimated source levels up to 190 dB re 1 μPa (rms), while the source level during drilling was 184 dB re 1 μPa (rms). There were spectral peaks discernible from the background noise to ranges of at least 38 km from the drillship with the main energy below 3 kHz. M-weighted sound pressure levels were virtually identical to broadband levels for low-frequency cetaceans and about 5 dB lower for high-frequency cetaceans. Signals from the dynamic positioning system were clearly detectable at ranges up to two km from the drillship.
Uploads
Papers by Jakob Tougaard