個人用メモです。 機械学習は素材集めがとても大変です。 でもこの素材集め、実は無理してやらなくても、元から良質な無料データベースがあったようなのです。 URLはこちら YouTube8-M https://research.google.com/youtube8m/explore.html 提供されているサービスは以下の通り 800万個の動画 19億個のフレーム 4800個の分類 使い方はExploreから画像セットを探し、ダウンロードするだけ。 他の方法も見つけた open images dataset 「すごい神だな」と思ったのは これもう完成されてますよね もちろんこの認識前の画像もセットでダウンロードできます。 Youtube-8Mとは、画像数を取るか、精度で取るか、という違いでしょうか。 他にも良い素材集を教えていただきました (はてなブックマーク情報 @sek_165 さん )
リアルタイムでおっさんから美女の映像を作り出すAI実験が、「す、すごすぎる!」「ライブでしたらだまされるレベル」と話題になっています。 す、すげーーー! 実験をしているのは、3DアーティストのHirokazu Yokoharaさん(@Yokohara_h)。Twitterに変換前後の映像を並べた動画を投稿しました。 その結果は驚くべきもの。動きが少々カクカクしているものの、Web会議を通じてであれば本物と信じてしまいそうなレベルです。 動作はもちろん、表情も追従。さらに顔だけでなく体形まで女性らしくなっています。髪形は、黒いTシャツをかぶることでロングヘアに変換させました。Tシャツの柄などがときどき変わってしまうので、よく見ていればおかしいと思えますが、ボーッと見ていたらわからないでしょう。ましてや、中身がおっさんなんて絶対に思えない! 黒いTシャツをかぶり、ロングヘアーを再現させました
どんな人向けの記事? レビューによって心理的なダメージを受けやすい方 非エンジニアだが、エンジニアチームがどんな機能を作っているか知りたい方 業務が溜まっていて、レビューに割く時間を捻出するのに苦労している方 コピペできるコードも公開します 初回レビューをAIに任せると、いろんなロールの人の役に立つ レビューは得意ですか? 優秀なエンジニアしかいないチームであれば、PRは1トピックに絞って小さく明確なコミットによって作成され、適切な要約とともに提供されることでしょう。 しかし、実際にはいろいろな制約から、PRが想定よりずっと大きくなってしまったり、関連トピックと異なるコードが混じってしまうこともあります。 実際のところ、大きなPRを適切にレビューするのは難しいことです。また、自分が詳しくない領域のレビューを行わなければいけない機会もあります。 今回の記事は、レビューを作成してくれるAI C
本日8月1日、音声合成技術の世界に、また画期的な動きがありました。「Seiren Voice」や「Yukarinライブラリ」の開発者としても知られるヒロシバ(@hiho_karuta)さんが、ITAコーパスを利用した商用利用も可能なAI音声合成システム、VOICEVOXなるソフトウェアをオープンソースのとして無料でリリースしたのです。具体的には現時点Windowsで動くシステムで、「ずんだもん」および「四国めたん」の声でテキストを読み上げるシステムとなっています。 これがオープンソースとなったことで、一般ユーザーが自由に利用できるというだけでなく、さまざまなシステムに組み込んで喋らせることが可能になったのが画期的なところ。たとえばロボットなどに組み込んで対話型のシステムを作ることや、観光案内システムに導入して喋らせる……といったこともできるほか、クラウド型のシステムを構築し、ブラウザを経由
ChatGPTを業務に組み込むためのハンズオン 2023/06/26 一般公開用 デジタル庁 Fact&Data Unit 大杉直也 ↑マイナンバー交付数のダッシュボードを作っているところです 「Microsoft でテストされたアイデアのうち、改善を示すメトリクスを実際に改善できたのは3分の1にすぎない」 (Microsoft社 元Vice President) 「もしあなたが実験主導のチームにいるなら、70%の仕事が捨てられることに慣れてください。それに応じてプロセスを構築しましょう」(Slack社 Director) A/Bテスト実践ガイド p14より 一方で 「アイデアの価値を見積もることは難しい。このケースでは、年間1億ドルの価値ある単純な変更が何か月も遅れていた。」(同著 p5より) こともあります 午前中のアイデアソンで出たアイデアはちゃんと検証するまで価値があるかは不明です
(『IT Text 自然語処理の基礎』より) 3ヶ月ほど前に空前のLLMブームについて概観する記事を書きましたが、それ以降も世間のLLMに対する狂騒ぶりは収まるどころかますます拍車がかかるという有様で、あまつさえ僕自身の仕事における日常業務にもじわじわと影響が及びつつあり、今後も良きにつけ悪しきにつけLLMと共生し続ける必要がありそうだと感じている今日この頃です。 そんな猫も杓子もLLMに群がるが如き空前のブームを受けて、エンジニアやデータ分析職の方々の中には「LLMに興味はあるんだけど世の中にあまりにも多くのLLM関連コンテンツが溢れ返っていて何から手をつけたら良いのか分からない」という向きもあるように見受けられます。そこで、僕も断じてLLM以下生成AIの専門家などではないのですが、個人的に「このテキストを読めばLLM時代を生き抜くことが出来そうだ」と感じた書籍を、全くの独断と偏見で3冊
イントロNetflixは、スマホやPCがあれば、どこでもいつでも、映画やドラマを見放題で楽しむことができます。今年はお家時間が増えたことで、Netflixをより満喫している方も多いのではないでしょうか。実際に、2020年1月〜3月に会員が全世界で1600万人ほど増え、合計1億8000万人を超えています。 Netflixをいくつかの数字で見てみると、さらにその凄さに驚かされます。 ・全世界のインターネット通信量(下り)の15%をNetflixが占めており、YouTubeを超える世界一の動画サービス ・時価総額が20兆円超え ・サブスクリプション収入が月々約1500億円 そんな多くのユーザーを有するNetflixの魅力の1つに、推薦システムがあります。Netflixのホーム画面には、今話題の作品やユーザーにパーソナライズ化されたおすすめの作品が並びます。 Googleの検索と違って、Netfl
ChatGPTが思いがけずいろいろなことを人間より賢くやっているのを見てシンギュラリティという言葉を使う人が増えたように思いますが、逆に、シンギュラリティは来ないのではという思いを強くしています。 まず、この文章でのシンギュラリティがなにかという話ですが、レイ・カーツワイルが「シンギュラリティは近い」の1章の終わりで「さあ、これが特異点だ」といっている特異点、そのシンギュラリティです。 シンギュラリティは近い―人類が生命を超越するとき 作者:レイ・カーツワイルNHK出版Amazon この特異点は単にAIが人間より賢くなるというだけではありません。人間より賢くなるだけだと、便利な道具が増えるだけなので、大騒ぎするほどの変化は起きません。人の仕事を奪うといっても、蒸気機関ほどでもないですね。印刷機などと並んで、人の生活を変える転換点にすぎず、ただひとつの点をあらわすシンギュラリティには なりま
自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco
近年の AI の進歩により、論文の読み方も大きく変化を遂げました。AI を活用することで以前と比べてはるかに簡単かつ早く論文が読めるようになりました。 以前私の個人ブログにて、論文の読み方やまとめ方を紹介しました。その時には要約ツールは用いていませんでしたが、最近はすっかり要約ツールを多用するようになりました。 本稿では、最新の AI を使った論文の読み方を丁寧に紹介します。 基本的な流れ 本稿でおすすめするのは ChatGPT か Claude で要約を生成して論文の概要をつかみ、Readable で精読するという方法です。ChatGPT や Claude では単に全体の要約を生成するだけでなく、肝となる箇所を特定したり理解するためにも用います。具体的な手順については後の項で解説します。 私が特定のテーマについて調査を行う場合には、テーマに関係する論文を被引用数の多いものを中心に 10
はじめに 私はこれまで機械学習のパラメータチューニングに関し、様々な書籍やサイトで学習を進めてきました。 しかしどれもテクニックの解説が主体のものが多く、 「なぜチューニングが必要なのか?」 という目的に関する記載が非常に少なかったため、体系的な理解に苦労しました。 この経験を後世に役立てられるよう、「初心者でも体系的に理解できる丁寧さ!」をモットーに記事にまとめたいと思います。 具体的には、 1. パラメータチューニングの目的 2. チューニングの手順とアルゴリズム一覧 3. Pythonでの実装手順 (SVMでの分類を例に) の手順で解説を進めます。 独自解釈も含まれるため、間違っている点等ございましたら指摘頂けると有難いです。 なお、文中のコードはこちらのGitHubにもアップロードしております。 2021/9/6追記:LightGBMのチューニング実行例追加 以下の記事に、Ligh
ジェイ・アラマールのブログより。 AIによる画像生成は、(私を含めて)人々の度肝をぬく最新のAIの能力です。テキストの説明から印象的なビジュアルを作り出す能力は、魔法のような品質を持ち、人間がアートを創造する方法の変化を明確に指し示しています。Stable Diffusionのリリースは、高性能(画質だけでなく、速度や比較的低いリソース/メモリ要件という意味での性能)なモデルを一般の人々に提供することになったのは、この開発における明確なマイルストーンです。 AI画像生成を試してみて、その仕組みが気になり始めた方も多いのではないでしょうか。 ここでは、Stable Diffusionの仕組みについて優しく紹介します。 Stable Diffusionは、様々な使い方ができる汎用性の高いものです。まず、テキストのみからの画像生成(text2img)に焦点を当てます。上の画像は、テキスト入力と生
画像生成AIの躍進が目覚ましい。エンジニア兼SF作家の筆者としては、AIが絵を描けるようになるのなら、絵が描けない自分でも漫画制作ができるようになるのではという期待があった。実際に2022年の末頃にはstable diffusionを使った漫画制作UIのプロトタイプを作ってみたこともある。 Google ColabでAI漫画制作用のUIを試作してみた。コマごとにプロンプトが割り当ててあって、AIが裏でたくさん選択肢を作りまくってくれる。人間が大量の絵からベストなものを選んだり、構図やセリフの調整に集中できるようなワークフローがいいのではないかという仮説 #stablediffusion pic.twitter.com/zI64zm3cNI — 安野貴博 (@takahiroanno) November 10, 2022 それから半年以上の月日が経ち、世の中でもMulti ControlNe
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? CS 448B Visualization (2020 Winter)は、Maneesh Agrawala氏による、Stanford大で行われた、データの可視化に関する体系的な講義です。 スタンフォード大の"CS 448B Visualization (2020 Winter)" がすごい。 データ可視化の体系的講義。どう図表に変換するかの理論、探索的データ分析、ネットワーク分析等の実践と盛り沢山。 スライドに加え、Observable(JavaScript), Colab(Python)どちらでも例を試せる。https://t.co/
AI は、Google が現在取り組んでいる中で最も本質的なテクノロジーです。AI は、医師による病気の早期発見の支援や、自国語での情報へのアクセスなど、人々、ビジネス、コミュニティの潜在能力を引き出します。そして、数十億人の生活を大きく改善できる新しい機会を提供します。6 年前から、私たちが Google の方向性を AI 中心に再編し「世界中の情報を整理し、世界中の人がアクセスできて使えるようにする」という Google のミッションを果たす最も重要な方法に AI を据えているのは、これが理由です。 以来、私たちは全面的に AI への投資を継続し、Google AI と DeepMind のチームは最先端のテクノロジーを進化させています。現在、AI の計算規模は半年ごとに倍増していますが、それはムーアの法則よりもはるかに早いペースです。同時に、高度なジェネラティブ AI と大規模言語モ
メルカリで写真検索とEdge AIチームに所属している澁井(しぶい)です。機械学習のモデルを本番サービスに組み込むための設計やワークフローをパターンにして公開しました。 GithubでOSSとして公開しているので、興味ある方はぜひご笑覧ください! PRやIssueも受け付けています。私の作ったパターン以外にも、有用なパターンやアンチパターンがあれば共有してみてください! GitHub:https://github.com/mercari/ml-system-design-pattern GitHub Pages:https://mercari.github.io/ml-system-design-pattern/README_ja.html なぜ機械学習システムのデザインパターンが必要なのか 機械学習モデルが価値を発揮するためには本番サービスや社内システムで利用される必要があります。そのた
KNNポール神田です。 まさにChatGPTやPerplexity AIとの出会いで、インターネット黎明期のような感動の日々である。 『英語は10000時間でモノになる』の著者であり、デジタルハリウッド大学の教授である橋本大也氏のFaceBookで気になる『プロンプト』が紹介されていた。 出典:デジタルハリウッド大学 無料で学べるすごい英会話AIのつくりかた 1 Voice Control for ChatGPT( https://chrome.google.com/webstore/detail/voice-control-for-chatgpt/eollffkcakegifhacjnlnegohfdlidhn)の拡張をChromeブラウザーにインストールする。これでChatGPTと音声で対話することができる。GPTがしゃべりだす。 2 ChatGPTに下記のプロンプトを入れてから英語で
この記事の概要 ・都職員による生成AI活用事例集を基に、ChatGPTの効果的な使い方を解説 ・プロンプト作成のコツと最新ノウハウを平易な言葉で紹介 ・具体的な指示、マークダウン記法の活用、理由の記載など実践的なテクニックを解説 ・サンプルプロンプトの修正例を通じて、より効果的な書き方を例示 ・ChatGPTとの対話を通じた論理的思考力向上の可能性を示唆 Claude 3.5 Sonnetで作成こんにちは、saip (@_saip_) です。 生成AIを利用した事業をしている株式会社TrippyでCTOを務めています。 Xで話題になっていたところてんさんの以下のポストから、「都職員のアイデアが詰まった文章生成AI活用事例集」という資料が公開されていることを知りました。 東京都もMarkdownとは言ってなくて、ハッシュタグと言ってる…… どうみてもMarkdownの見出しによる強調なんだが
社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。 数学 残念ながら、統計モデルを正しく用いようと思うと数学を避けることはできません。ニューラルネットワークのような表現力が高くて色々と勝手にやってくれるような統計モデルでも、何も知らずに使うのは危険です。必ず数学は学んでおきましょう。理想を言えば微分トポロジーや関数解析のような高度な理論を知っておくのがベス
4月23日、彗星のように現れたネット上のサービス、CoeFont STUDIO(コエ・フォント・スタジオ)は、誰でも無料で使える音声合成サービスということで、瞬く間に広がり、2日で累計ユーザー数が6万人を突破。すでに20万人を超えるところまで来ているようです。日本語でテキストを入力すれば、非常に滑らかな声でしゃべってくれ、その音声をユーザーは商用を含めて自由に利用できるという画期的ともいえるサービスとなっているのです。 このサービスを立ち上げたのは、なんと東京工業大学2年生、19歳の早川尚吾さん。株式会社Yellstonを立ち上げ、その新サービスとして、CoeFont STUDIOをスタートさせたのです。もちろん株式会社ですから、今後ビジネス展開をしていくことを目論んでいるわけですが、それはCoeFont STUDIOの延長線上にあるもので、世の中を大きく変えていく可能性もありそうです。先
はじめにこの記事は、Engineering Manager Advent Calendar 2020の24日目の記事す。 職種を越えた働き方を模索するWeb Engineerのtrebyさんと、技術を突き詰めたいiOS Developerのbanjunさんの二人のパーソナリティをつとめるpodcast「きのこるエフエム」でお話してきた今話題のキーワードDXについてのお話を再編して記事にしたものです。 実際のpodcastについては以下からどうぞ。 いつの間にか"DX"がデジタルトランスフォーメーションにとられてた。trebyさん(以下敬称略) これは、我々のマイブームというか、最近、「DXっていいよね?」っていうふうに私が謎掛けをしますと、banjunさんが、「DX、わからん!」というふうに返すんです。 banjunさん(以下敬称略) 「DXって何ですか?何がいいんですか?」っていう話です
こんにちは、Exploratoryの白戸です。 Appleは新型コロナウイルスの対策支援として、Appleマップでの経路検索をもとにした移動傾向のデータを公開しています。ところが、残念ながらこのデータはそのままでは簡単に可視化できるようなフォーマットになっておらず、ちょっとした加工を行う必要があります。 しかし逆に、加工の仕方さえわかってしまえばそれぞれの都市や地域の移動データを可視化することで、恐怖を煽るばかりのマスコミからは見えてこない現状を理解することができるようになります。 今回はこのAppleの移動傾向データを簡単に可視化できるようにするための基本的な加工方法を、みなさんと共有させていただければと思います。 データはこちらからダウンロードすることができます。 以下は「モダンでシンプルなUIを使ってデータサイエンスができる」Exploratoryを使って、「日本で最も自粛している都
米AppleのAI研究者らは10月7日(現地時間)、「GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models」(LLMにおける数学的推論の限界を理解する)という論文を発表した。 この論文は、LLM(大規模言語モデル)が、本当に人間のように論理的に考えて問題を解けるのか、という疑問を検証している。結論としては、LLMは今のところ、表面的なパターンを真似て答えを出しているだけで、真の推論能力は持っていないと主張している。 研究者らは、これらの問題点を検証するために、「GSM-Symbolic」という新しいテスト方法を開発した。これは、LLMの数学的推論能力を評価するためのベンチマークデータセット「GSM8K」を改良し、問題の表現や数字を柔軟に変えられるようにした
人間の描いたイラストか AI によって生成された画像かを判別する Human or AI に挑戦したところスコアが低くて悲しかったため、AI の癖を徹底的に分析して自動生成されたイラストを見抜く方法をまとめました。 追記: 2024 年 7 月 この記事を執筆してから 2 年ほどが経過しました。 まあ予想通り AI 技術は進展しており、生成されるイラストの品質も向上しています。いまだにこの記事には結構なアクセスがあり、内容の妥当性についてここで再度言及しておくことは価値がありそうです。 結論から言うと、この記事の内容は現在の AI においても概ね適用できると考えていいでしょう。恐らくはパラメータ数の増加に伴って AI の地力とも言える性能は執筆地点から大きく向上していますが、一方で定性的な得意・不得意の傾向については変わっていないように見えます。 なので、全体的な傾向についての記述は概ね信
はじめに こんにちは、CTO/DevRelブロックの堀江(@Horie1024)です。ZOZOではGitHub Copilotを全社へ導入しました。本投稿では、GitHub Copilotの導入に際して検討した課題とその課題の解決策としてどのようなアプローチを取ったのかを紹介します。 目次 はじめに 目次 GitHub Copilotとは何か? GitHub Copilot導入の背景と目的 導入する上での課題 セキュリティ上の懸念 ライセンス侵害のリスク GitHub Copilot for Businessの利用 導入による費用対効果 試験導入による費用対効果の見積もり 試験導入の実施 対象者の選出 アンケートの設計 試験導入の実施 アンケート結果の集計 アンケート結果の考察 費用対効果の見積もり 全社導入の判断 導入決定後のGitHub Copilot利用環境の整備 社内LT会 おまけ
「ChatGPTって何?」と聞かれたら、取りあえずこの資料を渡せば良い──2022年11月末に登場してすぐに世間を驚かせたAI「ChatGPT」。自民党もAIには注目しており、「AIの進化と実装に関するプロジェクトチーム」を開催しているのだが、そこで東京大学の松尾豊教授が提出した資料が「分かりやすい」と話題だ。 資料が提出されたのは2月17日開催の第2回会議。「AIの進化と日本の戦略」というタイトルで、大規模言語モデルの仕組みやChatGPT、今後の日本の戦略について説明するものだ。同資料は塩崎彰久衆議院議員が投稿したnote記事からダウンロードできる。 ChatGPTについては、その学習方法から、高度な会話を実現できた理由、ChatGPTでできること、利用場面や受け取られ方まで網羅的にまとめられている。 例えば、高度な会話後実現できた理由のパートでは、従来のモデルには「生成分が人間の好み
・はじめに:自己紹介とAI絵師になったきっかけ ・AI絵師を始めたきっかけ ・AIイラストをどのように売るか ・そもそも、現状のAI絵師を取り巻く環境は? ・AIイラストの強みと弱みを理解する ・AI絵師にとって一番の脅威は「画像生成AIを使いこなす神絵師」 ・AIイラストに価値を感じさせるために ・どのようにAI絵師は自身をブランディングするか? ・AIイラストのクオリティアップに真面目に取り組む ・AI絵師はこれからどのように稼ぐ? ・1年以内にできること ・画像生成AIは倫理的な正当性を獲得できるか? ・最後に ・はじめに:自己紹介とAI絵師になったきっかけ 本記事はあるふ氏が主催の「画像生成AIアドベントカレンダー」に寄稿したものである。主に、自分がAI絵師としてお金稼ぎをする上で考えたことや、その方法について紹介しようと思う。 先に、AI絵師としてお金稼ぎをする際のエッセンスにつ
何が起きたのか 生成AIが好きな個人がなんでも出展できる、 「なんでも生成AI展示会」 というイベントがありまして、 11/16(土) 12:30 ~ 18:00にて「#生成AIなんでも展示会」を開催します🎉 個人の方が生成AIで作っているものを見ることができる・体験することができるイベントになっています! 申し込みURLは以下⬇️https://t.co/aNIQ6myJ4q 以下の方との共同主催です@sald_ra @GianMattya @miketako3 @Yanagi_1112 — ようさん (@ayousanz) September 28, 2024 人づてに出展しないか誘われたので、ストレス解消がてら9月頃から「マルチエージェントLLM(大規模言語モデル)オーケストレーション」というコンセプトで競馬予想をするシステムをシコシコと土日に作っておりました。 (ふだんは仕事でウ
学生の皆さんへ 2023年5月11日 学長 樺山祐和 現在、ChatGPTをはじめとした生成系人工知能(生成AI)についての議論が高まっています。そして、今後ますます技術が進み、また社会にも深く広く浸透していくことが予想されます。 美術大学としてはよりよい「学び」を得てもらうべく、こうした新技術を柔軟に活用し、また危惧される側面にも十分に配慮し、制作や研究に真摯に向き合ってもらいたいと期待しています。このメッセージでは、以下の6点を軸に、生成AIをめぐる現状と課題について大学としての見解を記述します。 身近なツールとなってきた生成AIを、まずは自分の目で確かめてみよう。 生成AIの問題や可能性についてより深く考えていこう。 個人情報や機密情報、また悪意のある内容の入力は絶対にしてはいけません。 レポートや論文に、生成AIの回答をそのまま用いて提出することを禁止します。 生成AIを引用すると
筆者はUTAUによる波形接続の時代から「その人の声になりきる」技術を試してきましたが、このほど、その中でも画期的と思える技術に出会いました。『Seed-VC』(Seed Voice Conversion)というオープンソースソフトです。 ■AIボイチェンの進化どこが画期的なポイントかというと、高い音質を維持しながら、ゼロショット、つまりファインチューニングをせずに、1秒から30秒までの短い音源を参照するだけで、短時間でオリジナルに近いボイチェンができるところにあります。 以前紹介したDiff-SVCやRVCは、オリジナル音声に近いボイチェンが可能ですが、学習にはそれなりの長さのオーディオデータと高性能GPUによる処理が必要です。
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く