You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
グーグルは同社のクラウドサービスであるGoogle App Engineで、フル機能のMapReduce機能を提供することが同社のイベントGoogle I/O 2011で明らかにしました。 これまでGoogle App EngineではMapReduceを構成する「Map」「Shuffle」「Ruduce」の3つのうち、Mapperの機能の提供が行われてきました。 Google I/O 2011で行われたセッション「App Engine MapReduce」では、MapReduceを構成するすべての機能の提供が行われることが発表されています。 セッションのポイントを紹介しましょう。 App Engine MapReduce App EngineエンジニアリングチームのMike Aizatsky氏。 MapReduceは数年前にグーグルが開発した処理。社内ではほとんどあらゆるチームがこの処理
というわけで冬休み最後の自由研究として、Amazon Elastic MapReduce(EMR)を使ってみました。今なら公式ページもほぼ日本語化していて楽チンです。Amazon Web Services (日本語) Amazon Elastic MapReduceとはAmazon EMRは、Amazonのインフラ上で動作する仮想サーバーを使ったHadoopクラスタを時間単価で貸し出すサービスです。少々わかりにくいので、Amazon Web Service(AWS)の関連する製品群について整理しておきます。EC2 (Elastic Compute Cloud) EC2は、仮想マシンを時間単価で貸し出すサービスです。 EMRを使わずに、EC2に自前でHadoopをインストールして使うやり方もあります(EMRが出来る以前はそれしかなかった)。 EMRを使う場合でも、バックグラウンドでは自動的に
オープンソース・ソフトウェア「Hadoop」のMapReduceジョブは、標準ではJavaで記述します(その他には、Pig、Hive、JAQLといったものがあります)。しかし、意外と初心者には分かりにくいと筆者は感じます。本記事では、MapReduceジョブのサンプルコードを使って、できる限り正しくコードの意味を理解し、MapReduceへの入り口を示したいと思います。 HadoopでMapReduceを記述するときに使うAPIが、0.19から0.20に変わるところで新しくなっています。実は、現時点でHadoopプロジェクト本体からでさえも、新APIを使ったサンプルが提示されていません。本記事では、新しいAPIで筆者が書き直したサンプルを使って解説しますので、このサンプルは0.19以前のHadoopでは動かないことに注意してください。この記事は、0.20.2を使って検証し、解説しています。
Appengine MapreduceはGoogle App Engine用Python製のオープンソース・ソフトウェア。Googleの基礎技術の一つであるMapReduce。膨大な文字列やデータを細かく細分化し、無数のコンピュータ上で並列処理させることで高速なシステムを実現する仕組みだ。 実行画面 MapReduceはAmazon Webサービスにも真似されており(Amazon Elastic MapReduce)、有益さが分かっている。だが、どう使えば良いかが今ひとつ実感できないかも知れない。そこでMapReduceを手軽に試せるシステムとして開発されたのがAppengine Mapreduceだ。 Appengine MapreduceはGooglerが開発したソフトウェアで、Google App Engine上で動作する。テキストなどを分散化処理することができる。管理画面から処理を
こっちは本物のMapReduceだ! グーグルがAppEngine-MapReduceをオープンソースで開発中 グーグルはGoogle App Engine上でMapReduce処理を実現するオープンソースを開発中だと、先日行われたイベントGoogle I/Oで明らかにしています。プロジェクトのホームページもGoogle Code上に「appengine-mapreduce - Project Hosting on Google Code」として公開されています。 Reduce処理やJava版はこれから 1つ前の記事「グーグルによるMapReduceサービス「BigQuery」が登場。SQLライクな命令で大規模データ操作」では、グーグルがSQLライクな命令を用いて大規模データ処理のサービスを提供することをお伝えしました。 記事でも書いたとおり、これは内部でMapReduceを使っているかど
ちなみに、この分析のために必要とされるMapReduceのコードであるが、そのサイズはわずか20ステップだという。Yahoo!のプレゼンテーターである、エリック・バルデシュバイラー氏によると、たとえ経験の浅いエンジニアであっても、MapReduceによるプログラミングは可能であるとされる。 また、VISAのジョー・カニンガム氏からも、貴重なデータが提供されていたので以下に紹介する。同社では、1日に1億トランザクションが発生するため、2年間で700億強のトランザクションログが蓄積され、そのデータ量は36テラバイトに至るという。こうしたスケールのデータを、従来のRDBを用いて分析するには、約1カ月の時間が必要とされてきたが、Hadoopを用いることで13分に短縮されたという。 これまでは、Yahoo!にしろVISAにしろ、膨大なデータをRDBに押し込むほかに方法はなく、その分析に数十日を要する
前回、JavaScriptでMap Reduceのコードが書けるHadoop Streamingについて紹介しました。 標準入出力さえサポートされてあれば、任意のコードでMap Reduuceの処理が書ける、というものでしたが、エンジニアはそもそも面倒くさがり。コードも書くのも面倒です。 と、いうわけで、今回はもうコードすら書かずにSQLライクでMap ReduceできるHiveというプロダクトについて、まとめたいと思います。 Hive Hiveとは、簡単に言うとHadoop上で動作するRDBのようなものです。 HDFSなどの分散ファイルシステム上に存在するデータに対して、HiveQLというSQLライクな言語で操作できます。 で、面白いのがHiveQLの操作は基本的にMap Reduceのラッパーになっていること。 要するに、SELECT文実行すると裏でMap&Reduceのタスクが走り出
2009/05/12 米新聞社大手のニューヨーク・タイムズは5月11日、Rubyによる大規模分散処理のツールキット「Map/Reduce Toolkit」(MRToolkit)をGPLv3の下にオープンソースで公開したと発表した。MRToolkitは、すでに稼働しているクラスタ上のHadoopと合わせて使うことでRubyで容易にMap/Reduce処理を記述することができる一種のラッパー。処理自体はHadoopが行う。すでにHadoopを使っているユーザーであれば、中小規模のプロジェクトに対して、すぐにMRToolkitを適用可能としている。 デフォルトで有用なMap、Reduceの処理モジュールが含まれていて、数行のRubyスクリプトを書くだけで、例えば膨大なApacheのログからIPアドレス別の閲覧履歴をまとめるといった処理が可能という。独自にMapやReduceの処理を定義することも
ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog こんにちは、地域サービス事業部の吉田一星です。 今回は、Hadoopについて、Yahoo! JAPANでの実際の使用例を交えながら書きたいと思います。Hadoopとは、大量のデータを手軽に複数のマシンに分散して処理できるオープンソースのプラットフォームです。 複数のマシンへの分散処理は、プロセス間通信や、障害時への対応などを考えなければならず、プログラマにとって敷居が高いものですが、 Hadoopはそういった面倒くさい分散処理を一手に引き受けてくれます。 1台では処理にかなり時間がかかるような大量のデータも、複数マシンに分散させることで、驚くべきスピードで処理を行うことができます。 例えば、今まで1台でやっていた、あるログ集計処理
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く