Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

タグ

ブックマーク / kaiseh.hatenadiary.org (2)

  • K-means法によるクラスタリングのスマートな初期値選択を行うK-means++ - kaisehのブログ

    K-means法は、入力データからK個のランダムな個体を初期クラスタの中心として選択し、以降、クラスタの重心を移動させるステップを繰り返すことでクラスタリングを行う非階層的手法です。K-means法はシンプルで高速ですが、初期値依存が大きいのが弱点で、不適切な初期値選択をすると間違った解に収束してしまいます。 以下は、Introduction to Information Retrievalの16章に出てくる例です。 {d1, d2, ..., d6}をK=2でクラスタリングする場合、{{d1, d2, d4, d5}, {d3, d6}}が大域最適解ですが、初期クラスタの中心をd2, d5で与えると、{{d1, d2, d3}, {d4, d5, d6}}という誤った解に収束してしまいます。 この問題を改善するK-means++という手法を見つけたので、試してみました。 K-means+

    K-means法によるクラスタリングのスマートな初期値選択を行うK-means++ - kaisehのブログ
  • はてな村の地図『HatenarMaps』を公開しました - kaisehのブログ

    はてな村』のアナロジーを当に地図にできたら面白いだろうなと思って、週末を潰して作ってみました。TopHatenarが蓄積しているDBを一部活用したサービスになっています。 Blogopolis このサービスを簡単に説明すると、はてなダイアリーのユーザに、獲得ブクマ数に応じた領土面積を割り当て、さらに似た者同士の領土を隣接させるという試みです。 地図の全体を見渡すことで、はてダの大まかなトレンドを掴むこともできるし、スケールを拡大していけば個別記事に到達することもできます。さらに、Google Mapsで検索するような感覚ではてなidやキーワードを入力して地図を探索したり、「去年と今年で勢力図がどう変わったか」を調べることもできます。 HatenarMapsはTopHatenarと同様、Javaで開発しました。フレームワーク構成もTopHatenarと一緒で、Cubby+Mayaa+S2

    はてな村の地図『HatenarMaps』を公開しました - kaisehのブログ
    y_r
    y_r 2008/06/10
    そうかこうしたのか
  • 1