Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Эстәлеккә күсергә

Геометрия

Википедия — ирекле энциклопедия мәғлүмәте
Балаларҙы геометрияға өйрәтеүсе ҡатын. XIV быуат иллюстрацияһы.

Геоме́трия (бор. грек. γῆ — ер һәм μετρέω үлсәйем) — математика фәненең бер бүлеге, формаларҙы һәм ғөмөмиләштереүҙәрҙе өйрәнә. Геометрия математиканың башҡа бүлектәре менән тығыҙ бәйләнгән, шуға күрә уның сиктәре теүәл билдәләнмәгән.

Геометрия — иң элекке фәндәрҙең береһе, килеп сыгышы бик борондан килә, беҙҙең эраға тиклем үк барып етә. Геометрия һүҙе грек теленән тәржемә иткәндә «ер үлсәү» («гео»-ер, ә «метрео»-үлсәү) тигәнде аңлата. Бындай исемдең килеп сығышы ошолай аңлатыла: беренсе геометрия үҫеше төрлө үлсәү эштәре менән башлана, ер үлсәүҙәр, юлдар һалыу һәм төҙәлөш ваҡытында үлсәүһеҙ эшләүе бик ҡыйын, ә был фән менән был мәсьәләләр тиҙ сиселгән.

Геометрияға ҡағылышлы белемдәр бик боронғо замандан уҡ (Мысыр, Вавилон) Ер майҙанын, есемдәрҙең күләмен үлсәү, төҙөү, һуғарыу һ.б. эштәр, астрономик күҙәтеүҙәр ихтыяжы һөҙөмтәһендә тупланып килгән. Боронғо грек ғалимы Евклидтың «Башланғыстар» («Начала») исемле хеҙмәтендә (Б. Э. Т. 3 быуат) беренсе мәртәбә аксиомалар — геометрияның төп закондары тәғбирләнгән, улар ярҙамында иң ябай фигураларҙың төрлө үҙлектәре иҫбатлап сығарылған. Архимед (майҙан һәм күләмдәрҙе тулыландырып иҫәпләү ысулы, Б. Э. Т. 3 быуат), Аполлоний (конус киҫемдәре тураһындағы тәғлимәт, Б. Э. Т. 3 быуат), Птолемей (сферик геометрия, Б. Э. Т. 2 быуат) асыштары ла — геометрия өлкәһендәге мөһим ҡаҙаныштар.

Конус киҫелеше: Түңәрәк, эллипс, парабола, гипербола

XVII быуатта Р. Декарт (1637) тарафынан төҙөлгән координаталар ысулы геометрия мәсьәләләрен һандар теленә күсерергә һәм уларҙы алгебраик ысулдар менән сисергә мөмкинлек бирә һәм яңы асыштарҙың — дифференциаль һәм интеграль иҫәпләүҙәрҙең (И. Ньютон һәм Г. В. Лейбниц) нигеҙен тәшкил итә.

XVIII быуатта евклидса фазалағы кәкреләрҙе һәм өҫлөктәрҙе өйрәнгәндә анализ ысулдары ҡулланыу барышында (бер туған Я. һәм И. Бернуллилар, Г. Монж, Л. Эйлер һ.б. хеҙмәттәрендә) классик дифференциаль геометрияға нигеҙ һалына.

XVIII быуатта өҫлөктәр теорияһындағы иң мөһим нәтижәләр немец математигы К. Ф. Гаусс исеме менән бәйле. Ул өҫлөктөң эске геометрияһы тигән, бөгөлгәндә лә үҙгәрмәүсән эске үҙсәнлектәре йыйылмаһы төшөнсәһен керетә (1827).

Евклидса геометриянан бөтөнләй айырмалы, логик ҡаршылыҡһыҙ булған геометрия төҙөп, Н. И. Лобачевский был фәндең үҫешендә принципиаль яңы аҙым яһай. XIX быуатта Лобачевский геометрияһы барлыҡҡа килеү, шунан һуң башҡа геометриялар төҙөлөү математикала аксиомалар ысулын үҫтереүгә һәм камиллаштырыуға этәргес бирә (Д. Гильберт һ.б.). Немец математигы Ф. Клейндың рәүеш үҙгәртеүҙәр төркөмдәре теорияһы нигеҙендә Евклид булмаған геометриялар классификацияһын төҙөүе 19 быуаттаге ҙур ҡаҙаныштарҙың береһе булып һанала. 1854 йылда немец математигы Б. Риман Евклид булмаған геометриялар ҡыҫаларына һыймаған фазалар төҙөй. Риман күп төрлөлөктәре һәм уларҙы ғөмөмиләштереү буйынса алып барылған тикшеренеүҙәрҙә «ғөмөмиләштерелгән фәзалар» тип аталған төшенсә керетелә, ә уларҙы өйрәнеү 20 быуатта киң ҡолас ала. Мәҫәлән, А. Эйнштейн, дүрт үлсәмле Риманса фаза-ваҡыт төшөнсәһен ҡулланып (1916), сағыштырмалылыҡтың дөйөм теорияһын төҙөй.

XIX-XX быуаттар сигендә математикала абстракт ҡараштарҙың үҫеше геометрияны күплектәр теорияһы нигеҙенә күсереүгә килтерә. Француз математигы А. Пуанкареның күп төрлөлөктәрҙә интеграль иҫәпләүҙәр, француз математигы М. Фреше менән немец математигы Ф. Хаусдорфның метрик күп төрлөлөктәр теорияһына ҡараған һәм Мәскәү математик мәктәбе вәкилдәренең (П. С. Александров, П. С. Урысон, А. Н. Колмогоров, Л. С. Понтрягин) тикшеренү нәтижәләре геометрияның яңы бүлеге — топология фәне барлыҡҡа килеүгә ярҙам итә, ә ул математиканың башҡа өлкәләре үҫешенә лә ҙур йоғонто яһай.

XX быуатта дифференциаль геометрияла ике йүнәлеш билдәләнә. Беренсе йүнәлеш, математик анализ ысулдарын файҙаланып, бирелгән нөктә тирәһендәге геометрик объекттарҙың локаль үҙлектәрен өйрәнә һәм ул тикшерелә торған объекттарҙы һыҙыҡсалатырға, һыҙыҡлы алгебра ысулдарын ҡулланырға мөмкинлек бирә. Шул йүнәлештең үҫеүе нәтижәһендә К. Риччи, Т. Леви-Чивита, Э. Картан һ.б. хеҙмәттәрендә тензорлы анализға, бәйләнгәнлек теорияһына һәм ковариант дифференциаллауҙарға нигеҙ һалына. Икенсе йүнәлеш — дифференциаль топология — 1930 йылдар уртаһында Х. Уитни һәм Э. Штифель, Л. С. Понтрягин, Ш. Чжень һ.б. хеҙмәттәрендә нигеҙләнә. Шыма күп төрлөлөктәрҙең топологик инварианттарын, уларҙы сифатлаусы класстарҙың терминдарын өйрәнгәндә ғәйәт ҙур нәтижәләргә ирешелә (В. А. Рохлин, Д. У. Милнор, М. Ф. Атья һ.б.). Ғөмүмән алғанда, геометрия кәкреләр һәм өҫлөктәрҙең төҙөлөшөн Евклид һәм нәевклид фазаларында һәр яҡлап, шул иҫәптән уларҙың шыма түгеллеген һәм үҙенсәлекле нөктәләре булыуын да иҫәпкә алып өйрәнә (Н. В. Ефимов, А. Д. Александров, А. В. Погорелов, Н. Кейпер һ.б.).