Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Перайсці да зместу

Чатырохвугольнік

З Вікіпедыі, свабоднай энцыклапедыі
Чатырохвугольнікі
┌─────────────┼────────────┐
увагнуты выпуклы скрыжаваны
┌─────────────┼─────────────┐
апісаная акружнасць трапецыя датычны
| ┌───────────┤ |

раўнабокая трапецыя

раўнабокая

паралелаграм

сіметрычныя бакі

выпуклы рамбоід

дыяганалі перпендыкулярны
└─────┬─────┘ └─────┬─────┘

прамавугольнік

прамые вуглы

Ромб

раўнабедраны
└──────────┬─────────┘

квадрат
Рысунак 1. Чатырохвугольнік.

Чатырохвугольнік — плоская фігура, якая складаецца з чатырох пунктаў (вяршынь) і чатырох адрэзкаў (старон), якія паслядоўна іх злучаюць. Пры гэтым ніякія тры з дадзеных пунктаў не павінны ляжаць на адной прамой, а адрэзкі, якія іх злучаюць, не павінны перасякацца.

Інакш кажучы, чатырохвугольнік — гэта многавугольнік, які мае чатыры вяршыні і чатыры стараны.

Вяршыні чатырохвугольніка называюцца суседнімі, калі яны з'яўляюцца канцамі адной з яго старон, несуседнія вяршыні называюцца процілеглымі. Адрэзкі, які злучаюць процілеглыя вяршыні чатырохвугольніка, называюцца дыяганалямі. На рысунку 1 адрэзкі AC і BD — дыяганалі чатырохвугольніка ABCD.

Стораны чатырохвугольніка, якія выходзяць з адной вяршыні, называюцца суседнімі старанамі. Стораны, якія не маюць агульнага канца, называюцца процілеглымі старанамі. У чатырохвугольніку на рысунку 1 процілеглымі старанамі з'яўляюцца стораны AB і CD, BC і AD.

Чатырохвугольнік пазначаюць запісам яго вяршынь. Напрыклад, чатырохвугольнік на рысунку 1 можна абазначыць як ABCD. Пры пазначэнні чатырохвугольніка суседнія вяршыні павінны пералічвацца падрад у парадку абыхода чатырохвугольніка. Чатырохвугольнік ABCD можна таксама пазначыць BCDA ці DCBA, але нельга пазначыць ABDC (B і D — не суседнія вяршыні).

  • Сума вуглоў чатырохвугольніка роўная
  • Чатырохвугольнік можна ўпісаць у акружнасць толькі тады, калі сума процілеглых вуглоў роўная 180°
  • Чатырохвугольнік з'яўляецца апісаным каля акружнасці толькі тады, калі сумы даўжынь процілеглых старон роўныя

Плошча адвольнага выпуклага чатырохвугольніка роўная палавіне здабытку дыяганалей на сінус вугла паміж імі:

  • дзе  — дыяганалі чатырохвугольніка, а  — вугал паміж імі.

Перыметр чатырохвугольніка роўны суме яго старон

  • дзе  — стораны чатырохвугольніка.

Віды чатырохвугольнікаў

[правіць | правіць зыходнік]
Рысунак 2. Нявыпуклы чатырохвугольнік.

Існуюць выпуклы і нявыпуклыя чатырохвугольнікі.

Чатырохвугольнік з'яўляецца выпуклым, калі для кожнай з яго старон ён размешчаны па адзін бок ад прамой, атрыманай працягам гэтай стараны.

На рысунку 1 ABCD — выпуклы чатырохвугольнік, а на рысунку 2 чатырохвугольнік ABCD нявыпуклы.

Таксама вылучаюць:

  1. Паралелаграм — чатырохвугольнік, у якога процілеглыя стораны папарна паралельныя
  2. Трапецыя — чатырохвугольнік, у якога дзве стараны паралельныя, а дзве іншыя не паралельныя
  3. Дэльтоід — чатырохвугольнік, у якога дзве пары сумежных старон роўныя