Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 收藏
  • 关注

原创 深入理解马尔可夫链:无记忆性的随机过程

马尔可夫链的基本组成要素是状态和状态空间。状态:系统可能处于的不同情况。例如,如果我们模拟天气变化,天气的不同状况(如“晴天”、“雨天”)就是系统的状态。状态空间:所有可能状态的集合,通常用 ( S ) 来表示。如果我们将天气模型的状态定义为“晴天”与“雨天”,那么状态空间 ( S ) 就是 ({晴天雨天\text{晴天}, \text{雨天}晴天雨天})。马尔可夫链是一个强大的工具,用于描述和预测具有随机性质的系统。其核心特点是“无记忆性”,即未来状态只依赖于当前状态而与历史无关。

2024-11-15 06:00:00 703

原创 【随机过程】简介:从简单到复杂的探索

随机过程是一个随机变量序列,通常用来描述那些随着时间或空间变化而发生的随机事件。它包含了一系列的随机变量,这些变量的取值在时间上可能是离散的,也可能是连续的。时间:时间可以是离散的(例如,时间是整数:第1秒、第2秒等),也可以是连续的(例如,时间是实数:从0秒到1秒之间的任意时间点)。状态:每个时间点上的随机变量代表该时刻系统的状态。例如,在金融市场中,状态可能代表股票的价格。随机过程是用来描述随时间变化的随机现象的数学模型。

2024-11-14 21:15:07 670

原创 【混沌系统】洛伦兹吸引子-Python动画

【代码】【混沌系统】洛伦兹吸引子-Python动画。

2024-11-14 20:22:15 127

原创 【混沌理论】介绍

在动力系统中,吸引子描述的是系统长期行为的最终状态。吸引子反映了系统随时间演化后的稳定模式,即当时间趋于无穷时系统的状态会被吸引到的状态。

2024-11-13 22:35:44 535

原创 【数理哲学】决定论与混沌理论

(Determinism)指的是一种哲学和科学理论,认为宇宙中所有的事件都是由先前的事件决定的。也就是说,如果我们知道系统的初始状态和所有影响它的因素,就可以精确预测该系统未来的状态。这揭示了决定论的一个局限性:即使系统是完全由先前的条件决定的,但实际的预测可能性仍然受到初始条件测量精度的限制。混沌理论表明,在许多系统中,即使所有的规则和公式都已知,长期预测依然是不可能的。总的来说,混沌理论为科学提供了一种新的视角,表明复杂的动态系统可以是决定性的,但因其对初始条件的极端敏感性而表现出难以预测的混乱行为。

2024-11-13 06:00:00 327

原创 【Discrete Convolution】离散卷积&快速傅里叶变换(FFT)

在离散信号处理中,卷积是一种将两个信号序列相互组合以生成新序列的运算。它用于测量两个序列的相似性、检测信号中的特征或执行滤波操作。ynx∗hn∑k−∞∞xkhn−kynx∗hnk−∞∑∞​xkhn−k这个定义描述了将序列 ( h ) 反转并平移后与序列 ( x ) 的逐元素乘积再求和。

2024-11-12 19:03:11 896

原创 【Transformer】损失函数-交叉熵损失

交叉熵损失用于衡量模型的预测分布与真实分布之间的差异。−∑i1Nyilog⁡pi−i1∑N​yi​logpi​NNN) 是目标词汇的总数;yiy_iyi​) 是目标序列中每个词的真实标签;pip_ipi​) 是模型对每个词的预测概率。对于每个时间步,交叉熵损失会根据模型的预测概率与真实标签的匹配程度计算损失值,并将所有时间步的损失求和,得出序列的整体损失。

2024-11-12 06:00:00 2007

原创 【Transformer】模型输出模块处理

交叉注意力后得到的词向量会经过线性变换,得到一个与词汇表大小相同的 logits 向量。softmax被应用于 logits 向量,将其转换为一个概率分布。解码器根据概率选择下一个词(最大概率的词)。选定的词会被作为输入传递给解码器,进行下一轮预测。

2024-11-11 22:17:42 882

原创 【Word2Vec】传统词嵌入矩阵训练方法

Word2Vec是一种词嵌入模型,主要通过无监督学习来训练词汇的稠密向量表示。它通过分析大量的语料库,学习到每个词(token)在该语料库中的上下文关系。Word2Vec 使用神经网络模型来生成每个词的嵌入向量,嵌入向量的维度通常远小于词汇表的大小。

2024-11-11 21:27:56 671

原创 【复分析】专栏目录介绍

复分析专栏目录1. 复平面与复数运算1.1 复平面的基本概念复数的表示实部与虚部1.2 复数的表示方式笛卡尔坐标极坐标形式1.3 复数相乘的几何性质 ✔️2. 欧拉公式与自然指数函数2.1 欧拉公式的推导复指数函数的定义欧拉公式的背景与重要性2.2 从几何角度理解欧拉公式 ✔️2.3 从无穷级数角度理解欧拉公式 ✔️2.4 自然常数e的发现 ✔️3. 复数的指数形式与极坐标3.1 复数的指数形式复指数与复平面单位圆与复数的旋转3.2

2024-11-10 13:57:02 296

原创 【欧拉公式】从无穷级数角度理解

欧拉公式(Euler’s Formula)是复数和三角函数之间的一个深刻而优美的关系,由瑞士数学家莱昂哈德·欧拉提出。它在数学和物理中有着重要地位。

2024-11-09 06:00:00 898

原创 【复平面】-复数相乘的几何性质

在复平面中,两个复数(即向量)相乘时满足的性质。

2024-11-08 15:49:44 1203

原创 自然常数e的发现

( e ) 的发现源于复利问题的研究,随后通过伯努利、梅尔卡托等数学家的工作逐渐成形,最终在欧拉的研究中得到了系统的定义和广泛应用。现在,( e ) 已被视为一个基本的数学常数,与圆周率 ( \pi ) 一样,扮演着重要的角色。

2024-11-08 15:23:18 912

原创 【Linux】文件管理常用命令【超详细】

这篇博客介绍了Linux系统中的常用文件管理命令,包括`ls`、`cd`、`cp`、`mv`、`rm`和`mkdir`等。通过这些命令,用户可以高效地浏览目录、复制和移动文件、删除文件以及创建新目录。文章详细讲解了每个命令的基本用法和常见选项,并通过实例演示了这些命令在实际操作中的应用,帮助读者掌握文件管理的基本技能,提升Linux系统的使用效率。

2024-07-16 22:46:11 1277

原创 【Pandas】-Series数据类型

Series是Pandas中两种数据结构之一,可以看作是可自定义索引名称(标签)的一维数组,是构建数据框()的基本组成部分。大小不变性:类似String不可修改,append、del、drop等均为创建新的Series对象缺失数据类型:用 NaN(Not a Number)来表示缺失或无值2.参数解释:data: 可以是各种数据类型,比如字典、列表、NumPy数组或标量值。index: 可选参数,用于指定Series的索引。

2024-07-16 22:39:06 962

原创 【linux】预防rm误删文件的3种方法

在Linux系统中,误删文件或目录可能导致数据丢失和系统故障。本文介绍三种有效的预防方法:使用别名、启用回收站、以及配置只读文件系统。使用别名:通过将rm命令替换为交互式命令(如rm -i),增加删除操作的安全性。启用回收站:使用trash-cli工具,使删除的文件移动到回收站,从而可以轻松恢复误删文件。配置只读文件系统:将不需要频繁修改的目录或分区设置为只读,以防止误删操作,特别适用于关键配置文件或备份数据。

2024-07-12 16:10:57 1350

原创 【NLP】从NLP基础到Transformer革命:语言理解的过去、现在与未来

这篇博客详细介绍了自然语言处理(NLP)和Transformer模型的发展历程和关键技术。从早期依赖规则和文法的专家系统,到基于统计和机器学习方法的转变,再到深度学习和神经网络方法的崛起,文章阐述了NLP的各个发展阶段。重点介绍了LSTM、CNN、Word2Vec、ELMO、BERT等重要模型,并探讨了未来的发展方向,包括MASS、ALBERT、RoBERTa和UNILM等新兴技术。通过这篇文章,读者可以快速了解NLP和Transformer模型的历史、现状和未来趋势。

2024-07-11 21:40:58 1238

原创 【服务器】端口映射

端口映射(Port Mapping)是一种网络技术,通过将一个端口的数据流重定向到另一个端口,允许外部设备访问内部网络中的特定服务。主要有本地端口映射、远程端口映射和动态端口映射三种类型。应用场景包括远程访问内部服务、穿透防火墙、提高安全性以及负载均衡和代理。本文详细介绍了端口映射的概念、类型、应用场景,并通过SSH命令示例展示如何在本地计算机上实现端口映射,以访问远程服务器上的服务。

2024-07-11 21:35:14 4076

原创 【机器学习】支持向量机(SVM)

机器学习-西瓜书-🍉Book-6章-支持向量机

2024-06-29 17:47:47 721

原创 论文阅读-Baseline与Benchmark介绍

在科研和算法开发中,"benchmark"和"baseline"是两个常用的概念,它们在评估和改进算法性能时起着至关重要的作用。

2024-06-29 17:43:55 544 1

原创 【机器学习】神经网络

机器学习-西瓜书-🍉Book-5章-神经网络

2024-06-13 20:12:41 1033

原创 【机器学习】决策树

机器学习-西瓜书-🍉Book-4章-决策树

2024-06-13 20:10:09 747

原创 机器学习必备数学基础!-- 矩阵求导

本文章主要介绍了矩阵微积分中的 矩阵求导 相关数学知识

2024-05-25 22:00:57 975

原创 统计学-时间序列(Part 1)-时间序列概述

本文章作为统计学中时间序列章节的第一部分内容-时间序列概述介绍了时间序列的**概念**,**种类**以及时间序列的**分析方法**

2024-05-23 14:46:24 1248 1

原创 【机器学习】线性模型 (Part 2)

机器学习-西瓜书-🍉Book-3章-线性模型(Part 2),主要内容为引进 对数几率回归模型,将回归模型应用于分类问题上,其使用了极大似然估计+梯度下降法

2024-05-21 23:04:34 645

原创 【机器学习】模型评估与选择(Part 1)

机器学习-西瓜书-🍉Book-2章-模型评估与选择(Part 1),主要介绍了机器学习中的评估方法

2024-05-19 15:42:16 386 1

原创 【机器学习】线性模型 (Part 1)

机器学习-西瓜书-🍉Book-3章-线性模型(Part 1),主要内容为线性模型概述,以及回归类任务所常用的一元线性回归、多元线性回归问题,并延申至广义线性回归模型。

2024-05-19 01:44:17 977

原创 【机器学习】绪论

机器学习-西瓜书-🍉Book-1章-线性模型-绪论,主要介绍了西瓜书的使用方法,以及机器学习的入门介绍,包括一些专业术语的扫盲、机器学习的基本假设、分类、发展路程等等。

2024-05-17 15:31:47 1198

原创 ACM算法竞赛---学习路线---中级

7.6 Catalan数和Stirling数。6.14 整除分块(数论分块)3.9IDDFS和IDA*10.4 无向图的连通性。10.5 有向图的连通性。2.5倍增法与ST算法。3.6BFS与优先队列。6.5 异或空间线性基。6.6 0/1分数规划。6.8 线性丢番图方程。2.10贪心法与拟阵。4.5分块与莫队算法。4.13Treap树。6.11 威尔逊定理。10.9 最小生成树。

2024-04-16 09:24:13 461

原创 ACM算法竞赛---学习路线---初级

1.1链表1.2队列1.3栈1.4二叉树和哈夫曼树。

2023-12-29 00:09:34 816 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?