Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(210)
  • 收藏
  • 关注

原创 人工神经网络和神经网络,人工神经网络排名第一

例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

2022-10-21 12:30:37 720 1

原创 卷积神经网络详细教程,卷积神经网络基本操作

border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。同时,图像预处理的好坏也会影响到提取的特征。

2022-10-21 12:29:30 1015

原创 训练图像识别神经网络,神经网络训练过程图解

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。如果二者相差过大,数据集是一种分布,你的数据是另一种,放到一起训练,我没试过,但我认为结果不会太好。

2022-10-21 12:28:25 1319

原创 人工神经网络的拓扑结构,神经网络的神经元结构

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

2022-10-21 12:27:00 1056

原创 除了pid还有什么控制算法,类似pid算法还有哪些

PID是智能控制啊,比如要控制一个水管的水流量,通过流量计,开关阀,让PID来控制开关阀的开关大小使水流量正确.专家PID记得是PID的高级设置,某些个场合一般的PID无法使用,出现了了专用的,有特殊功能的.记忆中是这个,时间久了,记性不好.。谷歌人工智能写作项目:神经网络伪原创。

2022-10-21 12:25:52 4253

原创 神经网络知识点总结,神经网络基础与应用

我想这可能是你想要的神经网络吧!什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

2022-10-17 14:20:26 417

原创 神经网络图像识别代码,图神经网络 百度百科

A=[t1' P'];disp('预测值')disp(A)% 画出预测图figure(1),plot(t,iinput,'bo-'),hold onplot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid ontitle('BP神经网络预测某地铁线路客流量')xlabel('月号'),ylabel('客流量(百万)');例子:在0≤x≤2π区间内,绘制曲线y=2e-0.5xcos(4πx)程序如下:x=0:pi/100:2*pi;

2022-10-17 14:19:00 296

原创 卷积神经网络通俗理解,卷积神经网络是干嘛的

图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。卷积神经网络的连接性:卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。

2022-10-17 14:17:36 330

原创 神经网络架构演变过程,神经网络架构演变视频

到了20世纪80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP报告显示出神经网络的巨大潜力,使得该领域的研究从停滞期进入了繁荣期,这是神经网络发展史上的第二个转折。在科学研究中通常有这么一个现象,当某个领域的论文大量涌现的时候,往往正是该领域很不成熟、研究空间很大的时候,而且由于这时候人们对该领域研究的局限缺乏清楚的认识,其热情往往具有很大的盲目性。前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。Hopfield神经网络是反馈网络的代表。

2022-10-17 14:16:30 162

原创 循环神经网络的工作原理,循环神经网络结构图

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单元。3、RNN:神经元的输出可以在下一个时间戳直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!

2022-10-17 14:15:24 950

原创 人工智能和卷积神经网络,卷积神经网络算法实现

神经网络算法的设计水平,决定了它对现实的刻画能力。其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。目前AI常见的应用领域:图像识别(安防识别、指纹、美颜、图片搜索、医疗图像诊断),用的是“卷积神经网络(CNN)”,主要提取空间维度的特征,来识别图像。换句话说,现在复兴的人工智能更多仅限于最底层的,比如说视觉、听觉的目标分割(定位)与识别部分,而且还完全有别于生物智能,是一种“大数据智能”。

2022-10-17 14:14:19 840

原创 卷积神经网络激活层作用,卷积神经网络激活函数

LMS算法步骤:1,、设置变量和参量:X(n)为输入向量,或称为训练样本W(n)为权值向量e(n)为偏差d(n)为期望输出y(n)为实际输出η为学习速率n为迭代次数2、初始化,赋给w(0)各一个较小的随机非零值,令n=03、对于一组输入样本x(n)和对应的期望输出d,计算e(n)=d(n)-X(n)W(n+1)=W(n)+ηX(n)e(n)4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行文案狗。

2022-10-17 14:12:54 519

原创 神经网络参数优化算法,神经网络算法实例说明

LMS算法步骤:1,、设置变量和参量:X(n)为输入向量,或称为训练样本W(n)为权值向量e(n)为偏差d(n)为期望输出y(n)为实际输出η为学习速率n为迭代次数2、初始化,赋给w(0)各一个较小的随机非零值,令n=03、对于一组输入样本x(n)和对应的期望输出d,计算e(n)=d(n)-X(n)W(n+1)=W(n)+ηX(n)e(n)4、判断是否满足条件,若满足算法结束,若否n增加1,转入第3步继续执行文案狗。

2022-10-17 14:11:51 922

原创 训练好的神经网络怎么用,神经网络训练电脑配置

看你的描述这么专业,最后怎么问的有点外行,既然系统做图像识别的学习,肯定是需要大数据配合,电脑哪里处理的了,要用服务器,如果是初级应用,那么性能不一定要多强,两台入门级的服务器吧,因为可以支持多线程处理,为了节约,可以买国产的塔式服务器,便宜而且可以不用机柜,现在的服务器大多也都是千兆网卡了,不用特意要求,主要在内存和硬盘,现在的服务器瓶颈就是数据读取速度,资金允许就配固态盘做数据盘,配合前兆网卡和两台服务器处理能力,完美的学习环境。但是CPU的核心性能比GPU的性能强大,就好比教授和高中老师的区别。

2022-10-17 14:10:26 700

原创 神经网络 深度神经网络,深度神经网络计算公式

深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。一个成功的算法应该能让生成的顶层特征最大化的代表底层的样例。

2022-10-17 14:09:19 432

原创 人工神经网络的论文及算法代码

神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的

2022-10-13 13:40:35 774

原创 深度神经网络和传统神经网络区别

传统神经网络(这里作者主要指前向神经网络)中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

2022-10-13 13:37:17 4435

原创 神经网络怎么看训练效果,神经网络训练结果分析

达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。达到设定的网络精度0.001的时候,误差下降梯度为0.0046,远大于默认的1e-5,说明此时的网络误差仍在快速下降,所以可以把训练精度目标再提高一些,比如设为0.0001或者1e-5。你输入输出有12年的数据,但是你把这12年数据,其中多少年的数据拿来做网络训练用,多少年的拿来测试用呢?望采纳,有问题继续讨论。

2022-10-13 13:36:10 2517

原创 多极神经元的手绘图作业,多极神经元的手绘图片

根据神经元的功能又可分:①感觉神经元(sensory neuron),或称传入神经元(afferent neuron)多为假单极神经元,胞体主要位于脑脊神经节内,其周围突的末梢分布在皮肤和肌肉等处,接受刺激,将刺激传向中枢。根据神经元的功能又可分:①感觉神经元(sensoryneuron),或称传入神经元(afferentneuron)多为假单极神经元,胞体主要位于脑脊神经节内,其周围突的末梢分布在皮肤和肌肉等处,接受刺激,将刺激传向中枢。细胞体是神经元的代谢、营养中心,具有接受信息、整合信息的功能。

2022-10-13 13:31:28 2473

原创 反向传播人工神经网络,神经网络的前向传播

W代表所有层的特征权值,Wij(l)代表第l层的第i个元素与第j个特征的特征权值m代表样本个数,k代表输出单元个数hw(x(i))k代表第i个样本在输出层的第k个样本的输出 y(i)k代表第i个样本的第k个输出然后同于logistic回归,将所有的W更新即可。表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。其实神经网络的实质就是每一层隐藏层(除输入和输出的节点,后面介绍)的生成,都生成了新的特征,新的特征在此生成新的特征,知道最新的特征能很好的表示该模型为止。

2022-10-10 14:48:23 294

原创 神经网络算法的关键参数,神经网络输入输出计算

6)计算W[S1][S0],b[S1];9))输出W1[S1][S0],b1[S1]。三、总体算法1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)输入参数P对模式(xp,dp),p=1,2,…

2022-10-10 14:46:58 2049

原创 神经网络预测软件哪个好,神经网络预测软件下载

调用神经网络函数[x' iinput']R2=corrcoef(x,iinput)%预测年份或某一时间段t1=length(x)+1:length(x)+7;[t1' P']% 画出预测图figure(6),plot(t,x,'b*-'),hold onplot(t(end):t1(end),[iinput(end),f_out],'rp-'),grid ontitle('BP神经网络预测某地区人口数','fontsize',12)xlabel('年份'),ylabel('人口数');

2022-10-05 11:28:20 269

原创 神经网络建模的建模步骤,人工神经网络建模过程

人工神经网络有很多种,我只会最常用的BP神经网络。不同的网络有不同的结构和不同的学习算法。简单点说,人工神经网络就是一个函数。只是这个函数有别于一般的函数。它比普通的函数多了一个学习的过程。在学习的过程中,它根据正确结果不停地校正自己的网络结构,最后达到一个满意的精度。这时,它才开始真正的工作阶段。学习人工神经网络最好先安装MathWords公司出的MatLab软件。利用该软件,你可以在一周之内就学会建立你自己的人工神经网络解题模型。如果你想自己编程实现人工神经网络,那就需要找一本有关的书籍,专门看神经网络

2022-09-28 19:35:20 4481

原创 bp神经网络的训练方法,bp神经网络训练流程图

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-09-28 19:33:55 1225

原创 神经网络按功能分为几类,神经网络分为几种类型

目前,在遥感图像的自动分类方面,应用和研究比较多的人工神经网络方法主要有以下几种:(1)BP(Back Propagation)神经网络,这是一种应用较广泛的前馈式网络,属于有监督分类算法,它将先验知识融于网络学习之中,加以最大限度地利用,适应性好,在类别数少的情况下能够得到相当高的精度,但是其网络的学习主要采用误差修正算法,识别对象种类多时,随着网络规模的扩大,需要的计算过程较长,收敛缓慢而不稳定,且识别精度难以达到要求。层次型结构的神经网络将神经元按功能和顺序的不同分为输出层、中间层(隐层)、输出层。

2022-09-28 19:32:29 5414

原创 浅层神经网络与深度神经网络

人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- . -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。

2022-09-28 19:31:05 530

原创 人工神经网络的发展现状,2020最新神经网络模型

输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;BP网络是在前馈神经网络的基础上发展起来的,始终有一个输入层(它包含的节点对应于每个输入变量)和一个输出层(它包含的节点对应于每个输出值),以及至少有一个具有任意节点数的隐含层(又称中间层)。

2022-09-28 19:29:40 1415

原创 神经网络阈值是什么意思,神经网络阈值如何确定

请理解程序中的变量含义:inputnum:输入层节点数hiddennum:隐层节点数outputnum:输出层节点数因此,当输入为3时,如果前面有inputnum=size(P,1);语句,将会自适应确定输入节点数;如果没有使用该语句,直接将inputnum赋值为3即可,即加上inputnum=3;你这段代码是GA-BP神经网络最后的染色体解码阶段的代码,注意染色体编码结构为:输入层与隐层间权值矩阵、隐层阈值、隐层与输出层间权值矩阵、输出层阈值。

2022-09-28 19:28:14 978

原创 人工神经网络的功能特点,人工神经网络的缺点

多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。第二,具有联想存储功能。在科学研究中通常有这么一个现象,当某个领域的论文大量涌现的时候,往往正是该领域很不成熟、研究空间很大的时候,而且由于这时候人们对该领域研究的局限缺乏清楚的认识,其热情往往具有很大的盲目性。

2022-09-28 19:26:50 3873

原创 BP神经网络简单应用实例,bp神经网络的应用案例

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。3、计算网络实际输出与期望输出的误差。

2022-09-24 14:20:10 546

原创 神经网络电子书,神经网络入门书

神经网络计算机具有模仿人的大脑判断能力和适应能力,可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实时变化的大量数据,并引出结论。以往的信息处理系统只能处理条理清晰、经络分明的数据。而人的大脑却具有能处理支离破碎、含糊不清信息的灵活性,因而第六代计算机将在较大程度上类似人脑的智慧和灵活性。人脑有140亿神经元及10亿多神经键,人脑总体运行速度相当于每秒1000万亿次的电脑功能。

2022-09-24 14:17:21 961

原创 训练神经网络的详细步骤,如何训练一个神经网络

词错率不是 100% 的原因在于每个字母有 29 种可能性(a-z、逗号、空格和空白),神经网络很快就能学会:某些字符(e,a,空格,r,s,t)比其他的更常见辅音-元音-辅音是英文的构词特征MFCC 输入声音信号振幅特征的增加只与字母 a-z 有关。神经网络具有学习、联想和容错功能,是地下水水质评价工作方法的改进,如何在现行的神经网络中进一步吸取模糊和灰色理论的某些优点,建立更适合水质评价的神经网络模型,使该模型既具有方法的先进性又具有现实的可行性,将是我们今后研究和探讨的问题。

2022-09-24 14:15:54 5126

原创 什么是深度神经网络架构,神经网络架构简介范文

输入层:输出特征矩阵卷积层:进行卷积运算池化层:进行pooling缩小维度中间激活层:可有可无,一般为ReLU类的计算简单的激活函数对特征值修正这里卷积层、池化层、中间激活层可以重复全连接层:将特征矩阵集合向量化最后激活层:将向量化特征转换成标签。隐藏层介于输入层和输出层之间,这些层完全用于分析,其函数联系输入层变量和输出层变量,使其更配适数据。单元以层的方式组,每一层的每个神经元和前一层、后-层的神经元连接,共分为输入层、输出层和隐藏层,三层连接形成一-个神经网络。神经元是人工神经网络最基本的单元。

2022-09-24 14:13:05 124

原创 网络系统建模与仿真技术,信息网络建模与仿真

一、作用不同1、仿真随着军事和科学技术的迅猛发展,仿真已成为各种复杂系统研制工作的一种必不可少的手段,尤其是在航空航天领域,仿真技术已是飞行器和卫星运载工具研制必不可少的手段,可以取得很高的经济效益。2、建模模拟的作用表现在:①能对高度复杂的内部交互作用的系统进行研究和实验。②能设想各种不同方案,观察这些方案对系统的结构和行为的影响。③能反映变量间的相互关系,说明哪些变量更重要,如何影响其他变量和整个系统。④能研究不同时期相互间的动态联系,反映系统行为随时间变化而变化的情况。

2022-09-24 14:11:40 1798

原创 深度神经网络的成功应用,深度神经网络技术赋能

关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。

2022-09-17 19:07:50 1184

原创 卷积神经网络的训练算法,卷积神经网络算法实现

然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。四、迁移与运用:在教学活动中模拟社会实践“迁移”是经验的扩展与提升,“应用”是将内化的知识外显化、操作化,也是将间接经验直接化、将符号转化为实体、从抽象到具体的过程,是知识活化的标志,也是学生学习成果的体现。一、联想与结构:经验与知识的相互转化学习学科的基本结构,以联想的、结构的方式去学习,是深度学习的重要特征。深度学习的概念源于人工神经网络的研究。

2022-09-17 19:03:50 613

原创 神经网络一般有哪几个层,神经网络的层数怎么看

神经网络对象IW属性:该属性定义了网络输入和各输入层神经元之间的网络权值,属性值为NxNi维的单元数组,其中,N为网络的层数,Ni为网络的输入个数。{i,j}各个属性的含义:(1)、delays:该属性定义了网络输入的各延迟拍数,其属性值是由0或正整数构成的行矢量,各输入层实际接收的是由网络输入的各个延迟构成的混合输入。按你的假设,n就该取2,s1就是隐含层节点数,选取的公式是Hornik提出的公式,可以算的s1取值范围,到时自己选取合适职,s2就是你输出层节点数,也就是输出维数。

2022-09-16 11:55:22 5522

原创 基于神经网络的系统辨识,神经网络与图像识别

经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等

2022-09-16 11:53:58 2903

原创 神经网络训练数据集下载,神经网络训练集数量

为了方便观察数据分布,我们选用一个二维坐标的数据,下面共有4个数据,方块代表数据的类型为1,三角代表数据的类型为0,可以看到属于方块类型的数据有(1,2)和(2,1),属于三角类型的数据有(1,1),(2,2),现在问题是需要在平面上将4个数据分成1和0两类,并以此来预测新的数据的类型。补充说明一下,不论是径向基(rbf)神经网络还是经典的bp神经网络,都只是具体的训练方法,对于足够多次的迭代,训练结果的准确度是趋于一致的,方法只影响计算的收敛速度(运算时间),和样本规模没有直接关系。

2022-09-16 11:52:50 851

原创 图神经网络有哪些用途,神经网络和图神经网络

接下来就要进行仿真预测了t_1=sim(net,p),net就是你建立的那个网络,p是输入数据,由于网络的权值已经确定了,我们这时候就不需要知道t的值了,也就是说不需要知道他是苹果还是橘子了,而t_1就是网络预测的数据,它可能是1或者是2,也有可能是1.3,2.2之类的数(绝大部分都是这种数),那么你就看这个数十接近1还是2了,如果是1.5,我们就认为他是苹果和橘子的杂交,呵呵,开玩笑的,遇到x=2.5,我一般都是舍弃的,表示未知。缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

2022-09-16 11:51:26 186

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?