- 博客(93)
- 资源 (1)
- 收藏
- 关注
原创 【自然语言处理】Text Summarization文本摘要与注意力机制
Text Summarization英文原文公众号【深度学习视觉】整理什么是NLP中的文本摘要自动文本摘要是在保持关键信息内容和整体含义的同时,生成简洁流畅的摘要的任务。文本摘要目前大致可以分为两种类型:Extractive Summarization:重要内容、语句提取。Abstractive Summarization:文本总结。Extractive Summariza...
2020-03-14 20:35:03 3204 1
原创 打印文件【华为OD-Python】
因为打印的文件内容有轻重缓急之分,所以队列中的文件有1~10不同的代先级,其中数字越大优先级越高。文件的编号定义为”IN P NUM”事件发生第 x 次,此处待打印文件的编号为x。对于每个测试用例,每次”OUT P”事件,请在一行中输出文件的编号。如果存在两个优先级一样的文件,则选择最早进入队列的那个文件。打印机会从自己的待打印队列中选择优先级最高的文件来打印。接下来有 N 行,分别表示发生的事件。有5台打印机打印文件,每台打印机有自己的待打印队列。如果此时没有文件可以打印,请输出”NULL“。
2024-11-11 14:54:50 238
原创 GBDT算法
Tree2_Node1:回家时间小于20的年龄为[14,16],对应前面一颗树的残差是[-1,1],均值0作为这棵树这个节点的输出值,残差为[-1,1],残差没变说明特征无效;Tree2_Node2:回家时间大于20的年龄为[24,26],对应前面一颗树的残差是[-1,1],均值0作为这棵树这个节点的输出值,残差为[-1,1],残差没变说明特征无效;Tree2_Node1:离家时间小于8.5的年龄为[24,14],对应前面一颗树的残差是[-1,-1],均值-1作为这棵树这个节点的输出值,残差为[0,0];
2024-11-11 14:50:47 251
原创 windows源码安装protobuf,opencv,ncnn
要想编译成功ncnn,下载好cmake、mingw64、opencv、protobuf、ncnn、依次编译就可以。当然,有的有现成的不需要编译,看自己。在ncnn编译的时候给cmake中设置好所需要的库路径,仿照下文修改成你的。
2024-09-24 15:46:54 503
原创 np.pad各种方式的图文解释
constant’——表示连续填充相同的值,每个轴可以分别指定填充值,constant_values=(x,y)时前面用x填充,后面用y填充,缺省值填充0‘edge’——表示用边缘值填充‘linear_ramp’——表示用边缘递减的方式填充‘maximum’——表示最大值填充‘mean’——表示均值填充‘median’——表示中位数填充‘minimum’——表示最小值填充‘reflect’——表示对称填充‘symmetric’——表示对称填充。
2024-08-16 11:11:25 368
原创 前后向传播与参数更新的简单推理流程
总的来说,反向转播就是用损失对于所有参数与隐藏层输出计算梯度,并更新所有参数。计算损失对于隐藏层的输出的目的是计算这个隐藏层输出对于损失的影响,并将这个影响反馈到这层的参数中,简单来说就是链式法则计算的必经之路。
2024-08-02 10:07:09 632
原创 ultralytics-TaskAlignedAssigner
如果anchor的中心坐标与gt的左上角或右下角的差值小于阈值则设为positive anchor,得到表达positive anchor的mask_in_gts。通过更新后的mask_pos更新metrics,再对metrics做最大值归一化,归一化后的数值作为iou的权重相乘得到新的metrics。如果某个anchor成为多个GT的候选框的时候,选择iou最大的。选择的过程中遇到某个anchor成为多个GT的候选框的时候, 过滤该anchor。结合PD与GT动态生成target信息。
2024-06-25 20:51:32 256
原创 威联通配置docker同步阿里云盘
阿里云盘Docker安装创建应用程序:点击进入配置页面。应用程序名称:自由起名;YAML: 将REFRESH_TOKEN替换成你个人的;验证YAML:简单验证一下,看看验证是否通过,一般没问题;创建:点击创建,之后这个docker等会就会自行运行。version: '3.3'services: aliyundrive-webdav: container_name: aliyundrive-webdav restart: unless-stopped port
2022-05-10 12:34:50 4482 1
翻译 深度学习如何处理组合型问题
深度学习历史我们正在见证深度学习的第三次兴起。前两次浪潮—1950 - 1960年和1980 - 1990年—引起了相当大的兴奋,但慢慢失去了动力,因为这些神经网络既没有实现它们承诺的性能提升,也没有帮助我们理解生物视觉系统。第三次浪潮(2000年至今)则有所不同,因为深度学习在大量基准测试和现实世界应用方面的竞争力已经远远实现了超越。虽然大多数深度学习的基本思想在第二次浪潮中已经发展起来,但直到大型数据集和强大的计算机(GPU)的出现,它们的力量才得以释放。深度学习的兴起和衰落反映了在业界的时尚和学习
2022-04-27 16:12:45 459
原创 深度学习中为什么不同的特征信息可以直接相加
这是最近在做王者荣耀AI所做的笔记。# 首发同名公号class ImageFeatureDecoder(nn.Module): def __init__(self, vocab_size, d_model, N, heads, dropout, max_length=1024): super().__init__() self.N = N self.embedX = Embedder(vocab_size, d_model)
2022-04-10 19:20:52 2682
原创 王者荣耀觉悟系列(简介)
标题由觉悟引领的学习最近在看王者荣耀觉悟相关的资料,觉悟并没有开源,不过网上有个平民版的’觉悟’。我把这个平民版做了重构了,不过目前模型表现效果并不好,打算做好了再共享出来。通过近期的阅读,发现游戏AI主体流程还是很清晰的,无非相关的模型结构无法详细了解。不过,一旦你深刻理解其中的原理,训练一些简单的游戏,完全没什么问题。难得无非训练数据与算力罢了。标题训练数据的制作下面介绍一下王者荣耀训练数据的制作。游戏状态:敌我方塔掉了,敌我方英雄被杀,小兵被击杀等其它人可以在游戏画面中直接获取的信息。组成了游
2022-04-03 10:00:18 3946
原创 强化学习王者荣耀项目修改
修改模型参数中的名字chkpt = torch.load('weights/model_weights_StateJudgmentPre', map_location="cuda:0")chkpt['fn_layer.weight'] = chkpt.pop('图转.weight')chkpt['fn_layer.bias'] = chkpt.pop('图转.bias')chkpt['evaluate.weight'] = chkpt.pop('评价.weight')chkpt['evalua
2022-03-29 16:38:10 1561
原创 Python常用模块大全
公众号粉丝礼包:深度学习视觉后台关键词:python大礼包礼包内容:Matlab,数据分析与机器学习实战,数据科学概率基础,数学基础,算法讲解视频os模块:os.remove() 删除文件 os.unlink() 删除文件 os.rename() 重命名文件 os.listdir() 列出指定目录下所有文件 os.chdir() 改变当前工作目录os.getcwd() 获取当前文件路径os.mkdir() 新建目录os.rmdir() 删除空目录(删除非空目录, 使.
2022-03-16 20:40:24 740
原创 自动驾驶-目标检测-路标数据
数据中包括各种自然环境,一共两万多张数据。该资源还包括相关代码。【公众号:深度学习视觉】关键词:路标识别(尽快领取,以防失效)
2022-02-06 10:57:08 1964
原创 为什么机器人学不会装配技术
【公众号:深度学习视觉】关键词:python大礼包(目前免费)把一个灯泡旋入灯座这样简单的任务就可以说明为什么传统的工业机器人干不了这件事。要施加一个大小正好合适的力,在合适的时间把灯泡转动一个正确的角度,人类是通过直觉来做的,而一个编程的机器人是很难从事这样的工作。传统汽车动力总成的装配是一项手工作业。因为离合器和液力变矩器等部件的齿轮和其他重要零件都必须在一个狭小的空间里以非常高的精确度进行,所以工人需要熟练技巧以及经验。而且这样的工作只能由人工完成。单调的多次重复动作容易使人疲劳,并降低产品.
2022-01-29 15:47:01 497
原创 数据挖掘笔试题(一)
【公众号:深度学习视觉】⼀. 单项选择题1.想要了解上海市⼩学⽣的⾝⾼,需要抽取500个样本,这项调查中的样本是?A.从中抽取的500名学⽣的⾝⾼B.上海市全部⼩学⽣的⾝⾼C.从中抽取的500名⼩学⽣D.上海市全部⼩学⽣答案:A2.以下对k-means聚类算法解释正确的是A.能⾃动识别类的个数,随即挑选初始点为中⼼点计算;B.能⾃动识别类的个数,不是随即挑选初始点为中⼼点计算;C.不能⾃动识别类的个数,随即挑选初始点为中⼼点计算;D.不能⾃动识别类的个数,不是随即挑选初始点为中⼼.
2022-01-27 10:50:54 1075
原创 【无标题】
文件操作txt文件读取,考点:分批读取文件内容,避免内存不足的情况;## 一次性全部读到内存def get_lines(): with open('file.txt','rb') as f: return f.readlines()## 分批读到内存,避免内存不足;def get_line(): data_list = list() with open('file.txt','rb') as f: data_item = f.readlin
2022-01-26 22:01:38 969
原创 机器学习实战
全书使用python作为工具语言,进行相关程序的开发,包括数据分析,数据绘图等。第一部分介绍的是机器学习基础,带领读者了解一些关键术语、机器学习的主要任务、如何选择合适的算法解决问题,还有如何开发机器学习应用程序。第二部分主要讲的是K-近邻算法。包括如何使用K-近邻算法改进约会网站的配对效果和使用k-近邻算法进行手写数字的识别。第三部分主要介绍的是决策树。带领读者了解决策树的构造,并指导读者使用决策树预测隐形眼镜的类型。第四部分主要介绍的算法是朴素贝叶斯,一种基于概率论的分类方法。指导读者如何使用.
2022-01-09 21:36:32 657
原创 中文语料库
1.维基百科json版(wiki2019zh)104万个词条(1,043,224条; 原始文件大小1.6G,压缩文件519M;数据更新时间:2019.2.7)2.新闻语料json版(news2016zh)250万篇新闻( 原始数据9G,压缩文件3.6G;新闻内容跨度:2014-2016年)数据描述包含了250万篇新闻。新闻来源涵盖了6.3万个媒体,含标题、关键词、描述、正文。3.百科类问答json版(baike2018qa)150万个问答( 原始数据1G多,压缩文件663M;数据更新时间:20
2021-12-06 21:53:02 957
原创 如何使用 OpenAI GPT-3实现语义搜索
生成预训练 Transformer 3(GPT-3)是一种用于 OpenAI 生成文本的自回归语言模型。GPT-3展示了一个真正智能的语言模型生成文本的惊人潜力,并且有能力完成诸如问题回答、摘要、语义搜索、聊天机器人以及写诗或写论文等令人惊叹的任务。其中,我们已经在 GPT-3、广告生成、句子释义、意图分类等方面进行了问答实验。现在,让我们使用 OpenAI 提供的 GPT-3 API 端点为语义搜索任务做一些实验。OpenAI 的 API for search 允许你在一组文档中进行语义搜索。基于语义相
2021-10-03 13:30:22 2439 1
原创 迁移Anaconda导致的问题修复
File "D:\MySoftwares\Anaconda3\envs\tfenv\lib\subprocess.py", line 957, in _execute_child startupinfo)FileNotFoundError: [WinError 2] 系统找不到指定的文件。解决方法:1、首先在cmd 使用jupyter kernelspec list查看安装的内核和位置。2、进入安装内核目录打开kernel.jason文件,查看Python编译器的路径是否正确。{ "
2021-09-03 18:04:21 518 1
原创 Deformable-DETR-main
问: You’re trying to build PyTorch with a too old version of GCC. We need GCC 5 or later. conda install -c 3dhubs gcc-5cd models/opssh make.sh
2021-07-21 11:00:04 346
原创 现代图像分析(1)
知识来源于:西安电子科技大学 现代图像分析视频课程公众号做知识记录:【深度学习视觉】什么是图像图:物体透射或反射光的分布,是客观存在的。像:人对图的印像或认识,是人的感觉。图像:是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;是客观对象的一种可视化表示,它包含了被描述对象的有关信息。图像分类根据图像空间坐标和幅度(亮度或色彩)的连续性可分为模拟(连续)图像和数字图像。模拟图像:空间坐标和幅度都连续变化的图像数字图像:空间坐标和幅度均用离散的数字表示的图像图像处理.
2020-06-30 12:11:43 1893
原创 屏幕色彩空间
其中DCI-P3、sRGB、NTSC、AdobeRGB都是基于CIE色彩空间标准的色彩标准,只是应用的地方有些不同。从下图可以看到,NTSC和sRGB所包含的色彩范围是不太一样的,NTSC所表现的色彩要更多丰富一些,而sRGB所表现的色彩几乎被NTSC所包含,下图中蓝框为sRGB,绿框为NTSC,可以看到sRGB的色彩范围只有一小部分超出了绿框,而绝大部分色彩都在绿框的范围内。用NTSC标准(美国国家电视标准委员会的色彩信号标准)来衡量的话,100% DCI-P3相当于96% NTSC,而sRGB相当于72
2020-05-20 14:49:16 8689
原创 两种方差计算方法的时间消耗记录
第一博客公众号:深度学习视觉由于近期看见了BN中方差新的计算方法,不明白为什么要用那种计算方式,所以做了一次简单的性能测试。两种方差计算公式:1/n∑i=0nxi2−∑i=0nxi∗u\sum_{i=0}^n x_i^2 - \sum_{i=0}^n x_i * u∑i=0nxi2−∑i=0nxi∗u1/n∑i=0n(xi−u)2\sum_{i=0}^n (x_i - u) ^2∑i=0n(xi−u)2u=1n∑i=0nxiu = \frac{1}{n}\sum_{i=0}^n x
2020-05-20 14:46:59 1308
原创 【差异分析】秩和分析
简介: 秩和检验方法最早是由维尔克松(Wilcoxon)提出,叫维尔克松两样本检验法。后来曼—惠特尼将其应用到两样本容量不等(n1不等于n2)的情况,因而又称为曼—惠特尼U检验。这种方法主要用于比较两个独立样本的差异。秩和检验(rank sum test)又称顺序和检验,它是一种非参数检验(nonparametric test)。它不依赖于总体分布的具体形式,应用时可以不考虑被研究对象为何种分布以及分布是否以知,因而实用性较强。假设中的等价问题设有两个连续型总体, 它们的概率密度函数分别为:f1(x),
2020-05-14 14:53:46 4709
原创 EfficientDet代码解读-efficientdet
efficientdetdataset.pyCocoDatasetinitdef __init__(self, root_dir, set='train2017', transform=None): self.root_dir = root_dir # datasets/coco/ # datasets/coco/...
2020-05-14 14:47:51 2194
原创 【Code-coco检测框显示】
import jsonimport osimport cv2import numpy as npimport randomimport mathimport matplotlib.pyplot as pltfrom pycocotools.coco import COCO%matplotlib inlinedef visualize(image_dir, annotation_f...
2020-05-08 10:53:56 340
翻译 【天池比赛】面料剪裁利用率优化
竞赛题目本赛场聚焦面料剪裁利用率优化,要求选手研究开发高效可靠的算法,在较短时间范围内计算获得高质量可执行的排版结果,减少切割中形成的边角废料,提升面料切割利用率,减少计划时间、提高工作效率和避免人工计算的失误,提升价值降低成本。在规则面料的情况下,满足零件旋转角度、零件最小间距、最小边距的约束,解决以下两类问题:**初赛赛题:**基于所给零件,进行面料排版加工,耗料长度最短,面料利用率最高...
2020-05-08 09:47:43 2009 2
原创 【LeetCode-链表】相交链表
Link:相交链表语言:Python难度:简单描述:找到两个单链表的重合链。比如:Node_A = [4,1,8,4,5]; Node__B = [5,0,1,8,4,5],则这两个链表的起始节点为8,重合链为[8,4,5]。Node_A = [4,1,7,2,1]; Node__B = [5,0,1,8,4,5],则这两个链表的起始节点为null,不存在。方法一:将其中一个No...
2020-04-20 12:11:21 183
原创 TVM搭建系列(二)
安装NDKAndroid NDK 是一组使您能将 C 或 C++(“原生代码”)嵌入到 Android 应用中的工具。在平台之间移植其应用。重复使用现有库,或者提供其自己的库供重复使用。在某些情况下提高性能,特别是像游戏这种计算密集型应用。Android NDK下载将其解压到/opt 文件夹下,并修改环境变量:export NDKROOT=/opt/ndk/andro...
2020-04-20 12:10:03 1031
原创 TensorFlow物体检测安卓下载
TF官方教程:https://tensorflow.google.cn/lite/models/object_detection/overview?hl=zh-cn使用矩形框识别图片中的多个对象。可以辨别出80多种不同种类的物体。物体检测模块被训练用于检测多种物体的存在以及他们的位置。例如,模型可使用包含多个水果的图片和水果所分别代表(如,苹果,香蕉,草莓)的 label 进行训练,返回的数...
2020-04-18 11:17:22 378
CRF++_v0.58
2018-11-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人