- 博客(18)
- 收藏
- 关注
原创 C++刷LeetCode常用容器和函数
字典排序靠前的字符小,比较的顺序是从前向后比较,遇到不相等的字符就按这个位置上的两个字符的比较结果确定两个字符串的大小。std::unordered_set底层实现为哈希表,std::set 和std::multiset 的底层实现是红黑树,红黑树是一种平衡二叉搜索树,所以key值是有序的,但key不可以修改,改动key值会导致整棵树的错乱,所以只能删除和增加。此函数返回值为队列的头部元素,常与pop()函数一起,先通过front()获得队列头部元素,然后将其从队列中删除;在栈顶添加一个元素,无返回值;
2024-08-12 00:14:18 1032 1
原创 树莓派4B使用python配置USB转RS485模块读取传感器数值
是更底层的工作方式。在使用一个引脚时,需要查找信道号和物理引脚编号之间的对应规则。不同的树莓派版本,编写的脚本文件可能是无法通用。如果输入引脚处于悬空状态,引脚的值将是漂动的。读取到的值是未知的,因为它并没有被连接到任何的信号上,直到按下一个按钮或开关。使用这种编号的好处是,硬件一直可以使用,树莓派的版本问题不会有影响(兼容)。GPIO.cleanup()只会释放掉脚本中使用的GPIO引脚,并会清除设置的引脚编号规则。由于干扰的影响,输入的值可能会反复的变化。BOARD规则。
2024-03-09 15:39:39 1302
原创 基于ChatGLM2-6B的微调技术分享
微调所用GPU:RTX3090 24GB 实测两种微调所需显存分别为16GB和20GB。数据集不能超过100MB(心存疑惑)?清华提供的广告数据集约52MB有114599条数据,训练约4h。主要工作为基于ChatGLM2-6B的微调理解与实操,主要针对P-TuningV2和Lora微调。对比效果可见jupyter notebook,但指标没有量化。参考代码为ChatGLM2-6B官方教程。其中官方教程仅包含P-TuningV2微调与全量微调(显存要求很高),而且代码封装程度较高,可读性较差。
2023-09-14 16:58:23 1432 1
原创 Transformer——Sequence-to-sequence的理解
Transformer其实就是一个Sequence-to-sequence(Seq2seq)的模型。该模型输出是由机器自己决定。
2023-08-22 16:31:13 404 1
原创 Self-Attention——自注意力机制理解
如果输入是多个向量(比如一段话、一段音频、一个graph),可以使用one-hot的编码方式,但这样会使维度变得很大,因此可以使用embedding(带有语义的表达方式)来表示输入。答:因为输入如果是多个向量,则需要知道那一部分是需要重点关注的。为什么需要用自注意力机制呢?
2023-08-22 08:55:43 223 1
原创 ChatGLM2-6B本地部署或云端部署配置过程
如果要是用CPU运行的话,要保证有32G内存才可以。从Hugging Face Hub上下载模型。模型下载后放入源代码项目文件夹内。从github上下载源代码。
2023-07-21 15:07:50 2036 1
原创 Tensorflow-gpu不能使用GPU问题解决
在该虚拟环境中先安装对应版本的pytorch,安装pytorch时会自动安装上述错误依赖。1、创建环境:conda create -n tf260 python=3.8。2、安装:pip install tensorflow-gpu==2.6.0。安装好对应版本的依赖,其他依赖问题也会得到解决。这样操作的话会出现各种依赖错误问题因此。4、可能会出现下面的问题。
2023-03-20 15:31:36 4832
原创 Anaconda虚拟环境没有“bin”文件|环境在pycharm中不能用|问题解决
可以打开anaconda的镜像地址,可能原来的地址不能用了。然后把这个文件内容全都删了(不删除文件哈),使用conda默认镜像连接,然后再创建环境就可以用了。到这里问题就解决啦!在创建环境时打印出创建日志(如果后面没有加路径,默认是在终端下的默认路径)。一贯的解决办法就是说在创建环境时的指令没有写入python版本。这也确实会出现这样的情况。但我创建环境时都是加了版本号的,还是出现了类似的问题。而正常的虚拟环境文件夹,是有bin文件(内含可执行文件)的。如果看不懂的话,可以把日志内容发给ChatGPT啊!
2023-02-20 21:11:39 6381 6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人