Sesame is an important ancient oilseed crop of high medicinal value. In the present study, 37 cha... more Sesame is an important ancient oilseed crop of high medicinal value. In the present study, 37 characters including both quantitative and qualitative traits of sixty genotypes were characterized following IPGRI morphological descriptors for sesame. Multivariate analysis was computed to distinguish the varieties into different groups. Though thirty six microsatellite markers including genomic and Est-SSR markers were initially selected, but, finally, the accessions were genotyped by eight polymorphic primers. Altogether, 27 alleles were detected among the 60 genotypes, with an average of 3.37 alleles per locus. The number of alleles ranged from 2 to 6 alleles. From data of microsatellite markers, dissimilarity coefficients between varieties were computed following Jaccard's coefficient method. Principal coordinate analysis was used to represent the varieties in bi-directional space. Dendrogram was constructed using NJ method based on dissimilarity matrix. Cluster analysis based on morphological and molecular marker classified sesame genotypes into two major groups. Mantel test showed an insignificant correlation between phenotypic and molecular marker information. The genotypes belonging to the same geographical area did not always occupy the same cluster. The results confirmed that both genetic and phenotyp-ic diversity in a combined way could efficiently evaluate the variation present in different sesame accessions in any breeding program.
Sesame is an important ancient oilseed crop of high medicinal value. In the present study, 37 cha... more Sesame is an important ancient oilseed crop of high medicinal value. In the present study, 37 characters including both quantitative and qualitative traits of sixty genotypes were characterized following IPGRI morphological descriptors for sesame. Multivariate analysis was computed to distinguish the varieties into different groups. Though thirty six microsatellite markers including genomic and Est-SSR markers were initially selected, but, finally, the accessions were genotyped by eight polymorphic primers. Altogether, 27 alleles were detected among the 60 genotypes, with an average of 3.37 alleles per locus. The number of alleles ranged from 2 to 6 alleles. From data of microsatellite markers, dissimilarity coefficients between varieties were computed following Jaccard's coefficient method. Principal coordinate analysis was used to represent the varieties in bi-directional space. Dendrogram was constructed using NJ method based on dissimilarity matrix. Cluster analysis based on morphological and molecular marker classified sesame genotypes into two major groups. Mantel test showed an insignificant correlation between phenotypic and molecular marker information. The genotypes belonging to the same geographical area did not always occupy the same cluster. The results confirmed that both genetic and phenotyp-ic diversity in a combined way could efficiently evaluate the variation present in different sesame accessions in any breeding program.
Uploads
Papers by Pooja Rai