Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
  • Born in Jacksonville, Florida, USA. Attended Princeton University from 2010-2014, earning a bachelors degree in Ecolo... moreedit
  • Jakob Vinther, Peter Makovicky, Paul Sereno, James Gouldedit
The lifestyle of spinosaurid dinosaurs has been a topic of lively debate ever since the unveiling of important new skeletal parts for Spinosaurus aegyptiacus in 2014 and 2020. Disparate lifestyles for this taxon have been proposed in the... more
The lifestyle of spinosaurid dinosaurs has been a topic of lively debate ever since the unveiling of important new skeletal parts for Spinosaurus aegyptiacus in 2014 and 2020. Disparate lifestyles for this taxon have been proposed in the literature; some have argued that it was semiaquatic to varying degrees, hunting fish from the margins of water bodies, or perhaps while wading or swimming on the surface; others suggest that it was a fully aquatic underwater pursuit predator. The various proposals are based on equally disparate lines of evidence. A recent study by Fabbri and coworkers sought to resolve this matter by applying the statistical method of phylogenetic flexible discriminant analysis to femur and rib bone diameters and a bone microanatomy metric called global bone compactness. From their statistical analyses of datasets based on a wide range of extant and extinct taxa, they concluded that two spinosaurid dinosaurs (S. aegyptiacus, Baryonyx walkeri) were fully submerged “subaqueous foragers,” whereas a third spinosaurid (Suchomimus tenerensis) remained a terrestrial predator. We performed a thorough reexamination of the datasets, analyses, and methodological assumptions on which those conclusions were based, which reveals substantial problems in each of these areas. In the datasets of exemplar taxa, we found unsupported categorization of taxon lifestyle, inconsistent inclusion and exclusion of taxa, and inappropriate choice of taxa and independent variables. We also explored the effects of uncontrolled sources of variation in estimates of bone compactness that arise from biological factors and measurement error. We found that the ability to draw quantitative conclusions is limited when taxa are represented by single data points with potentially large intrinsic variability. The results of our analysis of the statistical method show that it has low accuracy when applied to these datasets and that the data distributions do not meet fundamental assumptions of the method. These findings not only invalidate the conclusions of the particular analysis of Fabbri et al. but also have important implications for future quantitative uses of bone compactness and discriminant analysis in paleontology.
Tyrannosaurs are among the most intensively studied and best-known dinosaurs. Despite this, their relationships and systematics are highly controversial. An ongoing debate concerns the validity of Nanotyrannus lancensis, interpreted... more
Tyrannosaurs are among the most intensively studied and best-known dinosaurs. Despite this, their relationships and systematics are highly controversial. An ongoing debate concerns the validity of Nanotyrannus lancensis, interpreted either as a distinct genus of small-bodied tyrannosaur or a juvenile of Tyrannosaurus rex. We examine multiple lines of evidence and show that the evidence strongly supports recognition of Nanotyrannus as a distinct species for the following reasons: 1. High diversity of tyrannosaurs and predatory dinosaurs supports the idea that multiple tyrannosaurids inhabited the late Maastrichtian of Laramidia; 2. Nanotyrannus lacks characters supporting referral to Tyrannosaurus or Tyrannosaurinae but differs from T. rex in >150 morphological characters, while intermediate forms combining the features of Nanotyrannus and T. rex are unknown; 3. Histology shows specimens of Nanotyrannus showing (i) skeletal fusions, (ii) mature skull bone textures, (iii) slow growth rates relative to T. rex, (iv) decelerating growth in their final years of life, and (v) growth curves predicting adult masses of ~1500 kg or less, showing these animals are subadults and young adults, not juvenile Tyrannosaurus; 4. growth series of other tyrannosaurids, including Tarbosaurus and Gorgosaurus, do not show morphological changes proposed for a Nanotyrannus–Tyrannosaurus growth series, and deriving Tyrannosaurus from Nanotyrannus requires several changes inconsistent with known patterns of dinosaur development; 5. Juvenile T. rex exist, showing diagnostic features of Tyrannosaurus; 6. Phylogenetic analysis suggests that Nanotyrannus may lie outside Tyrannosauridae. Tyrannosaur diversity before the K-Pg extinction is higher than previously appreciated. The challenges inherent in diagnosing species based on fossils mean paleontologists may be systematically underestimating the diversity of ancient ecosystems.
Proteins are the most stable of the macromolecules that carry genetic information over long periods of time. Closed systems are more likely to retain endogenous proteins or their degradation products. Amino acid racemisation data in... more
Proteins are the most stable of the macromolecules that carry genetic information over long periods of time. Closed systems are more likely to retain endogenous proteins or their degradation products. Amino acid racemisation data in experimental and subfossil material suggests that mollusc shell and avian eggshell calcite crystals can demonstrate closed system behaviour, retaining endogenous amino acids. Here, Late Cretaceous (Campanian–Maastrichtian) Argentine titanosaurian sauropod eggshells show dark, organic stains under light microscopy/photography and fluorescence imaging. Raman spectroscopy can yield bands consistent with various organic molecules, possibly including N-bearing molecules or geopolymers. Pyrolysis-gas chromatography-mass spectrometry reveals pyrolysates consistent with amino acids as well as aliphatic hydrocarbon homologues that are not present in modern eggshell, consistent with kerogen formation deriving from eggshell lipids. High-performance liquid chromatography reveals that their intra-crystalline fraction can be enriched in some of the most stable amino acids (Glx, Gly, Ala, and possibly Val) and are fully racemic (despite being some of the slowest racemising amino acids), indicating ancient origin. This preservation varies across localities, but similar ancient amino acid profiles were also observed in Late Cretaceous Spanish titanosaurians from several localities and Chinese putative hadrosaurid eggshell. These amino acid results are consistent with previous studies on degradation trends deduced from modern, thermally matured, sub-fossil, and ∼3.8–6.5 Ma avian eggshell, as well as ∼30 Ma calcitic mollusc opercula. Selective preservation of certain fully racemic amino acids, which do not racemise in-chain, and the concentration of free amino acids suggests likely complete hydrolysis of original peptides. Liquid chromatography-tandem mass spectrometry supports this hypothesis by failing to detect any non-contamination peptide sequences from the Mesozoic eggshell. These closed-system amino acids are possibly the most thoroughly supported non-avian dinosaur endogenous protein-derived constituents, at least those that have not undergone oxidative condensation with other classes of biomolecules. Biocrystal matrices can help preserve mobile organic molecules by trapping them (perhaps with the assistance of resistant organic polymers), but trapped organics are nevertheless prone to diagenetic degradation, even if such reactions might be slowed in exceptional circumstances. Future work should survey fossil biocalcite to determine variability in amino acid preservation.
Melanin pigments are central to colors and patterns in modern vertebrate integuments, which inform upon ecological and behavioral strategies like crypsis, aposematism, and sociosexual selection. Over the last decade, melanin has emerged... more
Melanin pigments are central to colors and patterns in modern vertebrate integuments, which inform upon ecological and behavioral strategies like crypsis, aposematism, and sociosexual selection. Over the last decade, melanin has emerged as a valuable tool for predicting color in exceptionally preserved fossil feathers and subsequent testing of paleobiological hypotheses in long-extinct dinosaurs and birds. Yet much remains to be learned about melanin stability, diagenetic alterations to melanin chemistry, and their implications for "paleocolor reconstruction." Pressure-temperature maturation experiments with modern feathers offer a way to examine these topics but have mostly been conducted in closed-system capsules or open-system aluminum foil. Both methods have operational limitations and do not consider the filtering effect of porous sediment matrices on thermally labile chemical groups versus stable ones during natural fossilization. We use sediment-encased maturation to resolve this issue and demonstrate replication of organic preservation of melanin highly comparable to compression fossils. Our experiments, coupled with time-of-flight secondary ion mass spectrometry, show predictable volatilization of N/S-bearing molecules and increased melanin cross-linking with elevated temperatures. We also suggest that eumelanin is more stable compared with pheomelanin at higher temperatures, explaining why eumelanic colors (black, dark brown, iridescent) are better preserved in fossils than pheomelanic ones (reddish brown). Furthermore, we propose that proteins preferentially undergo hydrolysis more so than forming N-heterocycles in selectively open systems analogous to natural matrices. Thus, we conclude that melanin pigments and not diagenetically altered protein remnants are the key players in promoting fossilization of soft tissues like feathers.
We address the identity of putative ovarian follicles in Early Cretaceous bird fossils from the Jehol Biota (China), whose identification has previously been challenged. For the first time, we present a link to the botanical fossil... more
We address the identity of putative ovarian follicles in Early Cretaceous bird fossils from the Jehol Biota (China), whose identification has previously been challenged. For the first time, we present a link to the botanical fossil record, showing that the “follicles” of some enantiornithine fossils resemble plant propagules from the Jehol Biota, which belong to Carpolithes multiseminalis. The botanical affinities of this “form-taxon” are currently unresolved, but we note that C. multiseminalis propagules resemble propagules associated with cone-like organs described as Strobilites taxusoides, which in turn are possibly associated with sterile foliage allocated to Liaoningcladus. Laser-Stimulated Fluorescence imaging furthermore reveals different intensities of fluorescence of “follicles” associated with a skeleton of the confuciusornithid Eoconfuciusornis zhengi, with a non-fluorescent circular micro-pattern indicating carbonaceous (or originally carbonaceous) matter. This is inconsistent with the interpretation of these structures as ovarian follicles. We therefore reaffirm that the “follicles” represent ingested food items, and even though the exact nature of the Eoconfuciusornis stomach contents remains elusive, at least some enantiornithines ingested plant propagules.
Despite reports of sexual dimorphism in extinct taxa, such claims in non-avian dinosaurs have been rare over the last decade and have often been criticized. Since dimorphism is widespread in sexually reproducing organisms today,... more
Despite reports of sexual dimorphism in extinct taxa, such claims in non-avian dinosaurs have been rare over the last decade and have often been criticized. Since dimorphism is widespread in sexually reproducing organisms today, under-reporting in the literature might suggest either methodological shortcomings or that this diverse group exhibited highly unusual reproductive biology. Univariate significance testing, especially for bimodality, is ineffective and prone to false negatives. Species recognition and mutual sexual selection hypotheses, therefore, may not be required to explain supposed absence of sexual dimorphism across the grade (a type II error). Instead, multiple lines of evidence support sexual selection and variation of structures consistent with secondary sexual characteristics, strongly suggesting sexual dimorphism in non-avian dinosaurs. We propose a framework for studying sexual dimorphism in fossils, focusing on likely secondary sexual traits and testing against all alternate hypotheses for variation in them using multiple lines of evidence. We use effect size statistics appropriate for low sample sizes, rather than significance testing, to analyse potential divergence of growth curves in traits and constrain estimates for dimorphism magnitude. In many cases, estimates of sexual variation can be reasonably accurate, and further developments in methods to improve sex assignments and account for intrasexual variation (e.g. mixture modelling) will improve accuracy. It is better to compare estimates for the magnitude of and support for dimorphism between datasets than to dichotomously reject or fail to reject monomorphism in a single species, enabling the study of sexual selection across phylogenies and time. We defend our approach with simulated and empirical data, including dinosaur data, showing that even simple approaches can yield fairly accurate estimates of sexual variation in many cases, allowing for comparison of species with high and low support for sexual variation.
Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are... more
Fossils were thought to lack original organic molecules, but chemical analyses show that some can survive. Dinosaur bone has been proposed to preserve collagen, osteocytes, and blood vessels. However, proteins and labile lipids are diagenetically unstable, and bone is a porous open system, allowing microbial/molecular flux. These 'soft tissues' have been reinterpreted as biofilms. Organic preservation versus contamination of dinosaur bone was examined by freshly excavating, with aseptic protocols, fossils and sedimentary matrix, and chemically/biologically analyzing them. Fossil 'soft tissues' differed from collagen chemically and structurally; while degradation would be expected, the patterns observed did not support this. 16S rRNA amplicon sequencing revealed that dinosaur bone hosted an abundant microbial community different from lesser abundant communities of surrounding sediment. Subsurface dinosaur bone is a relatively fertile habitat, attracting microbes that likely utilize inorganic nutrients and complicate identification of original organic material. There exists potential post-burial taphonomic roles for subsurface microorganisms.
Background: Exceptional preservation of endogenous organics such as collagens and blood vessels has been frequently reported in Mesozoic dinosaur fossils. The persistence of these soft tissues in Mesozoic fossil bones has been challenged... more
Background: Exceptional preservation of endogenous organics such as collagens and blood vessels has been frequently reported in Mesozoic dinosaur fossils. The persistence of these soft tissues in Mesozoic fossil bones has been challenged because of the susceptibility of proteins to degradation and because bone porosity allows microorganisms to colonize the inner microenvironments through geological time. Although protein lability has been studied extensively, the genomic diversity of microbiomes in dinosaur fossil bones and their potential roles in bone taphonomy remain underexplored. Genome-resolved metagenomics was performed, therefore, on the microbiomes recovered from a Late Cretaceous Centrosaurus bone and its encompassing mudstone in order to provide insight into the genomic potential for microbial alteration of fossil bone. Results: Co-assembly and binning of metagenomic reads resulted in a total of 46 high-quality metagenome-assembled genomes (MAGs) affiliated to six bacterial phyla (Actinobacteria, Proteobacteria, Nitrospira, Acidobacteria, Gemmatimonadetes and Chloroflexi) and 1 archaeal phylum (Thaumarchaeota). The majority of the MAGs represented uncultivated, novel microbial lineages from class to species levels based on phylogenetics, phylogenomics and average amino acid identity. Several MAGs from the classes Nitriliruptoria, Deltaproteobacteria and Betaproteobacteria were highly enriched in the bone relative to the adjacent mudstone. Annotation of the MAGs revealed that the distinct putative metabolic functions of different taxonomic groups were linked to carbon, nitrogen, sulfur and iron metabolism. Metaproteomics revealed gene expression from many of the MAGs, but no endogenous collagen peptides were identified in the bone that could have been derived from the dinosaur. Estimated in situ replication rates among the bacterial MAGs suggested that most of the microbial populations in the bone might have been actively growing but at a slow rate. Conclusions: Our results indicate that excavated dinosaur bones are habitats for microorganisms including novel microbial lineages. The distinctive microhabitats and geochemistry of fossil bone interiors compared to that of the external sediment enrich a microbial biomass comprised of various novel taxa that harbor multiple gene sets related to interconnected biogeochemical processes. Therefore, the presence of these microbiomes in Mesozoic dinosaur fossils urges extra caution to be taken in the science of paleontology when hunting for endogenous biomolecules preserved from deep time.
The preservation potential of biomolecules within vertebrate integument through deep time has recently been subject to much research and controversy. In particular, the preservation potential of proteins, such as collagen and keratin, is... more
The preservation potential of biomolecules within vertebrate integument through deep time has recently been subject to much research and controversy. In particular, the preservation potential of proteins, such as collagen and keratin, is currently debated. Here, we examine claims from a recent study (Schweitzer et al., 2018, PLoS One), which concludes that feather keratin has a high preservation potential. We argue that this work provides insufficient evidence for protein preservation due to issues of methodology and data interpretation. Additionally, we contrast their approach and claims to those of other recently published studies in relation to the question of keratin protein preservation in fossils. We worry that most of the perceived evidence for Mesozoic polypeptide survival stems from repeated replication of methods prone to false detection, rather than triangulation by validating these claims with alternative methods that provide independent lines of evidence. When alternative explanations exist for the evidence cited as support for dinosaur proteins far exceeding their predicted preservation limits, it is most parsimonious to reject the more extreme taphonomic hypotheses. The evidence is instead more consistent with a mode of preservation in which keratinous structures do not fossilize organically as polypeptides, but rather as largely pigment and/or calcium phosphate remnants, which were originally held within the keratin matrix that is now lost. Unsupported taphonomic models (e.g., keratin polypeptide preservation) have the potential to influence our interpretation of fossil data, potentially resulting in erroneous paleobiological or evolutionary conclusions, as illustrated in another recent paper (Pan et al., 2019, PNAS) that we also discuss.
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the... more
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is typically stored in rod-to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary appendages create the so-called 'structural colours'. Reconstruction of colour patterns in ancient animals has opened an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape, arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
White fibers from a Late Cretaceous dinosaur Shuvuuia deserti stained positive for b-keratin antibodies in a 1999 paper, followed by many similar immunological claims for Mesozoic protein in bones and integu-ment. Antibodies recognize... more
White fibers from a Late Cretaceous dinosaur Shuvuuia deserti stained positive for b-keratin antibodies in a 1999 paper, followed by many similar immunological claims for Mesozoic protein in bones and integu-ment. Antibodies recognize protein epitopes derived from its tertiary and quaternary structure, so such results would suggest long polypeptide preservation allowing for sequencing with palaeobiological implications. However, proteins are relatively unstable biomacromolecules that readily hydrolyze and amino acids exhibit predictable instability under diagenetic heat and pressure. Furthermore, antibodies can yield false positives. We reanalyzed a Shuvuuia fiber using focused ion beam scanning electron micro-scopy, energy-dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, and laser-stimulated fluorescence imaging, finding it to be inorganic and composed mainly of calcium phosphate. Our findings are inconsistent with any protein or other original organic substance preservation in the Shuvuuia fiber, suggesting that immunohistochemistry may be inappropriate for analyzing fossils due to issues with false positives and a lack of controls.
Research Interests:
Exceptional fossils can preserve diagenetically-altered biomolecules. Understanding the pathways that lead to such preservation is vital to utilizing fossil information in evolutionary and palaeoecological studies. Experimental taphonomy... more
Exceptional fossils can preserve diagenetically-altered biomolecules. Understanding the pathways that lead to such preservation is vital to utilizing fossil information in evolutionary and palaeoecological studies. Experimental taphonomy explores the stability of tissues during microbial/ autolytic decay or their molecular stability through matura-tion under high pressure and temperature. Maturation experiments often take place inside sealed containers, preventing the loss of labile, mobile or volatile molecules. However , wrapping tissues inside aluminium foil, for example, can create too open a system, leading to loss of both labile and recalcitrant materials. We present a novel experimental procedure for maturing tissues under elevated pressure/tem-perature inside compacted sediment. In this procedure, porous sediment allows maturation breakdown products to escape into the sediment and maturation chamber, while recalcitrant, immobile components are contained, more closely mimicking the natural conditions of fossilization. To test the efficacy of this procedure in simulating fossil diagenesis, we investigate the differential survival of melanosomes relative to proteinaceous tissues through maturation of fresh lizard body parts and feathers. Macro-and ultrastructures are then compared to fossils. Similar to many carbonaceous exceptional fossils, the resulting organic components are thin, dark films composed mainly of exposed melanosomes resting on the sediment in association with darkened bones. Keratinous, muscle, collagenous and adipose tissues appear to be lost. Such results are consistent with predictions derived from non-sediment-encased maturation experiments and our understanding of biomolecular stability. These experiments also suggest that organic preservation is largely driven by the original molecular composition of the tissue and the diagenetic stability of those molecules, rather than the tissue's decay resistance alone; this should be experimentally explored in the future.
'Exceptional fossils' of dinosaurs preserving feathers have radically changed the way we view their paleobiology and the evolution of birds. Understanding how such soft tissues preserve is imperative to accurately interpreting the... more
'Exceptional fossils' of dinosaurs preserving feathers have radically changed the way we view their paleobiology and the evolution of birds. Understanding how such soft tissues preserve is imperative to accurately interpreting the morphology of fossil feathers. Experimental taphonomy has been integral to such investigations. One such experiment used a printing press to mimic compaction, done subaerially and without sediment burial, and concluded that the leaking of bodily fluid could lead to the clumping of feathers by causing barbs to stick together such that they superficially resemble simpler, less derived, filamentous structures. Here we use a novel, custom-built experimental setup to more accurately mimic subaque-ous burial and compaction under low-energy, fine-grain depositional environments applicable to the taphonomic settings most plumage-preserving 'exceptional fossils' are found in. We find that when submerged and subsequently buried and compacted, feathers do not clump together and they maintain their original arrangement. Submersion in fluid in and of itself does not lead to clumping of barbs; this would only occur upon pulling feathers out from water into air. Furthermore, sediment encases the feathers, fixing them in place during compaction. Thus, feather clumping that leads to erroneously plesiomorphic morphological interpretations may not be a taphonomic factor of concern when examining fossil feathers. Our current methodology is amenable to further improvements that will continue to more accurately mimic subaqueous burial and compaction, allowing for various hypothesis testing.
Research Interests:
Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and... more
Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils.
Research Interests:
Identifying feather morphology in extinct dinosaurs is challenging due to dense overlapping of filaments within fossilized plumage and the fact that some extinct feather morphologies are unlike those of extant birds or those predicted... more
Identifying feather morphology in extinct dinosaurs is challenging due to dense overlapping of filaments within fossilized plumage and the fact that some extinct feather morphologies are unlike those of extant birds or those predicted from an 'evo-devo' model of feather evolution. Here, we compare a range of dinosaur taxa with preserved integumentary appendages using high-resolution photographs to better understand fossil feather morphology and gain insight into their function and evolution. A specimen of the basal paravian Anchiornis possesses contour feathers disarticulated from the plumage, revealing a novel feather type: a 'shaggy', open-vaned, bifurcated feather with long barbs attached to a short rachis, which is much simpler than the contour feathers of most extant birds. In contrast, it is likely that the contour feathers of Sinosauropteryx were simpler than those seen in Anchiornis; a 'tuft' morphology of multiple barbs connected at their bases (e.g. via a shared fol-licle), but lacking a rachis, is tentatively inferred. However, conclusive morphological descriptions await the discovery of isolated Sinosauropteryx contour feathers. Paravian wing feathers also show potentially plesiomorphic traits. Comparison with Confuciusornis suggests that Anchiornis wing feathers were at least partially open-vaned. Combined with the interpretation of Anchiornis contour feathers, this suggests that differentiated barbicels are relatively derived compared to pennaceous feathers and the appearance of wings. 'Shaggy' contour feathers probably influenced thermoregulatory and water repellence abilities, and, in combination with open-vaned wing feathers, would have decreased aerodynamic efficiency. Simplified, open-vaned wing feathers were also observed on the oviraptorosaur Caudipteryx, consistent with, but not necessarily diagnostic of, its suggested flightlessness. Taken together, these observations have broad implications for how we depict a wide variety of dinosaurs and how we view the function and evolution of feathers.
The evolution of integumentary structures, particularly in relation to feathers in dinosaurs, has become an area of intense research. Our understanding of the molecular evolution of keratin protein is greatly restricted by the fact that... more
The evolution of integumentary structures, particularly in relation to feathers in dinosaurs, has become an area of intense research. Our understanding of the molecular evolution of keratin protein is greatly restricted by the fact that such information is lost during diagenesis and cannot be derived from fossils. In this study, decay and maturation experiments are used to determine if different keratin types or integumentary structures show different patterns of degradation early in their taphonomic histories and if such simulations might advance our understanding of different fossilization pathways. Although different distortion patterns were observed in different filamentous structures during moderate maturation and ultrastructural textures unique to certain types of scales persisted in moderate maturation, neither of these have been observed in fossils. It remains uncertain whether these degradation patterns would ever occur in natural sediment matrix, where microbial and chemical decay happens well before significant diagenesis. It takes some time for remains to be buried, meaning that keratin may not be left for moderate maturation to produce such patterns. Higher, more realistic maturation conditions produce a thick, and water soluble fluid that lacks all morphological and ultrastructural details of the original keratin, suggesting that such textural or distortion patterns are unlikely to be preserved in fossils. Although different degradation patterns among keratinous structures are intriguing, it is unlikely that such information could be recorded in the fossil record. Calcium phosphates and pigments are the surviving components of integumentary structures. Thus, the results here are likely of more relation to the archaeological record than fossil record. Other noteworthy results of these experiments are that melanin may not be the leading factor in determining the rate of microbial decay in feathers but may reduce the rate of degradation from maturation, that the existence of rachis filamentous subunits similar to plumulaceous barbules is supported, and that previously reported dinosaur ‘erythrocytes' may be taphonomic artifacts of degraded organic material.
Recent studies have suggested the presence of keratin in fossils dating back to the Mesozoic. However, ultrastructural studies revealing exposed melanosomes in many fossil keratinous tissues suggest that keratin should rarely, if ever, be... more
Recent studies have suggested the presence of keratin in fossils dating back to the Mesozoic. However, ultrastructural studies revealing exposed melanosomes in many fossil keratinous tissues suggest that keratin should rarely, if ever, be preserved. In this study, keratin's stability through diagenesis was tested using microbial decay and maturation experiments on various keratinous structures. The residues were analysed using pyrolysis-gas chromatography-mass spectrometry and compared to unpublished feather and hair fossils and published fresh and fossil melanin from squid ink. Results show that highly matured feathers (200–250°C/250 bars/24 h) become a volatile-rich, thick fluid with semi-distinct pyrolysis compounds from those observed in less degraded keratins (i.e. fresh, decayed, moderately matured, and decayed and moderately matured) suggesting hydrolysis of peptide bonds and potential degradation of free amino acids. Neither melanization nor keratin (secondary) structure (e.g. ⍺- vs β-keratin) produced different pyrograms; melanin pyrolysates are largely a subset of those from proteins, and proteins have characteristic pyrolysates. Analyses of fossil fur and feather found a lack of amides, succinimide and piperazines (present even in highly matured keratin) and showed pyrolysis compounds more similar to fossil and fresh melanin than to non-matured or matured keratin. Although the highly matured fluid was not water soluble at room temperature, it readily dissolved at elevated temperatures easily attained during diagenesis, meaning it could leach away from the fossil. Future interpretations of fossils must consider that calcium phosphate and pigments are the only components of keratinous structures known to survive fossilization in mature sediments.
Conclusive evidence for sexual dimorphism in non-avian dinosaurs has been elusive. Here it is shown that dimorphism in the shape of the dermal plates of Stegosaurus mjosi (Upper Jurassic, western USA) does not result from non-sex-related... more
Conclusive evidence for sexual dimorphism in non-avian dinosaurs has been elusive. Here it is shown that dimorphism in the shape of the dermal plates of Stegosaurus mjosi (Upper Jurassic, western USA) does not result from non-sex-related individual, interspecific, or ontogenetic variation and is most likely a sexually dimorphic feature. One morph possessed wide, oval plates 45% larger in surface area than the tall, narrow plates of the other morph. Intermediate morphologies are lacking as principal component analysis supports marked size- and shape-based dimorphism. In contrast, many non-sex-related individual variations are expected to show intermediate morphologies. Taphonomy of a new quarry in Montana (JRDI 5ES Quarry) shows that at least five individuals were buried in a single horizon and were not brought together by water or scavenger transportation. This new site demonstrates co-existence, and possibly suggests sociality, between two morphs that only show dimorphism in their plates. Without evidence for niche partitioning, it is unlikely that the two morphs represent different species. Histology of the new specimens in combination with studies on previous specimens indicates that both morphs occur in fully-grown individuals. Therefore, the dimorphism is not a result of ontogenetic change. Furthermore, the two morphs of plates do not simply come from different positions on the back of a single individual. Plates from all positions on the body can be classified as one of the two morphs, and previously discovered, isolated specimens possess only one morph of plates. Based on the seemingly display-oriented morphology of plates, female mate choice was likely the driving evolutionary mechanism rather than male-male competition. Dinosaur ornamentation possibly served similar functions to the ornamentation of modern species. Comparisons to ornamentation involved in sexual selection of extant species, such as the horns of bovids, may be appropriate in predicting the function of some dinosaur ornamentation.
We examined bristle-like appendages on the tail of the Early Cretaceous basal ceratopsian dinosaur Psittacosaurus with laser-stimulated fluorescence imaging. Our study reveals previously unknown details of these structures and confirms... more
We examined bristle-like appendages on the tail of the Early Cretaceous basal ceratopsian dinosaur Psittacosaurus with laser-stimulated fluorescence imaging. Our study reveals previously unknown details of these structures and confirms their identification as integumentary appendages. For the first time, we show that most bristles appear to be arranged in bundles and that they exhibit a pulp that widens towards the bristle base. We consider it likely that the psittacosaur bristles are structurally and developmentally homologous to similar filamentous appendages of other dinosaurs, namely the basal heterodontosaurid Tianyulong and the basal therizinosauroid theropod Beipiaosaurus, and attribute the greater robustness of the bristles of Psittacosaurus to a higher degree of cornification and calcification of its integument (both skin and bristles). Although the psittacosaur bristles are probably homologous with avian feathers in their origin from discrete cell populations, it is uncertain whether they developed from a follicle, one of the developmental hallmarks of true feathers. In particular, we note a striking resemblance between the psittacosaur bristles and the cornified spine on the head of the horned screamer, Anhima cornuta, an extant anseriform bird. Similar, albeit thinner keratinous filaments of extant birds are the ‘beard’ of the turkey, Meleagris gallopavo, and the crown of the Congo peafowl, Afropavo congensis. All of these structures of extant birds are distinct from true feathers, and because at least the turkey beard does not develop from follicles, detailed future studies of their development would be invaluable towards deepening our understanding of dinosaur filamentous integumentary structures.
Since the discovery of exceptionally preserved theropod dinosaurs with soft tissues in China in the 1990s, there has been much debate about the nature of filamen-tous structures observed in some specimens. Sinosauropteryx was the first... more
Since the discovery of exceptionally preserved theropod dinosaurs with soft tissues in China in the 1990s, there has been much debate about the nature of filamen-tous structures observed in some specimens. Sinosauropteryx was the first non-avian theropod to be described with these structures, and remains one of the most studied examples. Despite a general consensus that the structures represent feathers or feather homologues, a few identify them as degraded collagen fibres derived from the skin. This latter view has been based on observations of low-quality images of Sinosauropteryx, as well as the suggestion that because superficially similar structures are seen in Jurassic ichthyo-saurs they cannot represent feathers. Here, we highlight issues with the evidence put forward in support of this view, showing that integumentary structures have been misinterpreted based on sedimentary features and preparation marks, and that these errors have led to incorrect conclusions being drawn about the existence of collagen in Sino-sauropteryx and the ichthyosaur Stenopterygius. We find that there is no evidence to support the idea that the integu-mentary structures seen in the two taxa are collagen fibres, and confirm that the most parsimonious interpretation of fossilized structures that look like feather homologues in Sinosauropteryx is that they are indeed the remains of feather homologues.
Research Interests:
Body size is undoubtedly one of the most useful measures of sexual dimorphism and, by proxy, sexual selection. Here, I examine large, published datasets of average sexual size dimorphism (SSD) in four clades of amniotes: birds, mammals,... more
Body size is undoubtedly one of the most useful measures of sexual dimorphism and, by proxy, sexual selection. Here, I examine large, published datasets of average sexual size dimorphism (SSD) in four clades of amniotes: birds, mammals, squamates, and turtles. Most sexual variation is of subtle magnitude; attempts to discretely categorize species as monomorphic may overlook genuine and common sexual variations of small magnitude (e.g., <10-20% difference). Mammals, squamates, and turtles have unimodal SSD distributions centered close to zero that vary in skew. Mammals skew towards a preponderance of taxa with larger males than females, and mammals with the most extreme SSD have larger males than females. Turtles, however, skew strongly towards a preponderance of taxa with larger females than males, and turtles with the most extreme SSD have larger females than males. Squamates are intermediate to these two clades. Birds are unique in that they 1) are noticeably deficient in taxa near monomorphism, 2) have a bimodal distribution with peaks closely and roughly equidistantly straddling either side of monomorphism, and 3) have a high preponderance of taxa with larger males than females. This suggests stronger disruptive selection or constraints against monomorphism in birds compared to other amniotes. Bird data from Dunning (2007) yields bimodality, while other datasets do not, possibly due to data artefacts/errors. Although Rensch's rule (RR) is difficult to apply to broad clades, scaling patterns were nevertheless examined here. While turtles and squamates show full adherence to RR, mammals show weaker adherence. Mammal scaling is comparatively less male-biased with increased size than scaling in squamates and turtles, and sex-role reversed mammals instead approach isometry between male and female size. Although bird taxa with larger males than females follow RR, sex-role reversed birds show the converse RR pattern. In birds, increasing size leads to increased dimorphism magnitude regardless of the direction of dimorphism, even though regression of the entire clade deceptively suggests they scale isometrically. This paradoxical scaling explains their unusual bimodal SSD distribution, as shown here through simulation. Equidistant bimodality from monomorphism might suggest disruptive selection where both mating systems have mirrored sexual selection dynamics of comparable effect. Scaling patterns between dimorphism magnitude and overall taxon size in non-reversed and reversed systems might not be readily apparent when examining the whole clade. Large mammals have disproportionately male-biased and more extreme SSD magnitudes. In comparison, large birds have relatively numerous sex-role reversed taxa as well as more extreme SSD magnitudes. These results deserve further testing with tighter phylogenetic controls and comparison of data sources. Additional ecological, physiological, and behavioral variables should also be examined in relation to SSD (e.g., altriciality vs. precociality, oviparity vs. viviparity, clutch size, neonate mass).
Feathers are complex integumentary structures with high diversity across species and within plumage and have varied functions (e.g., thermoregulation, flight). Flight is lost in many crown lineages, and frequently occurs in island... more
Feathers are complex integumentary structures with high diversity across species and within plumage and have varied functions (e.g., thermoregulation, flight). Flight is lost in many crown lineages, and frequently occurs in island founding or semiaquatic context. Different extant lineages lost flight across at least three orders of magnitude of time (~79.58 Ma-15 Ka). Flight loss effect on sensory capacity, brain size, and skeletomusculature have been studied, but less work exists on relations between flightlessness and feathers. To understand how flight loss affects feather anatomy, we measured 11 feather metrics (e.g., barb length, barb angle) from primaries, tertials, rectrices, and contour feathers on skins of 30 flightless taxa and their phylogenetically closest volant taxa, supplemented with broader sampling of primaries across all orders of volant crown birds. Our sample includes 27 independent losses of flight; the sample contains nearly half the extant flightless species count and matches its ~3:2 terrestrial:semiaquatic ratio. Vane symmetry increases in flightless lineages, and these patterns are strongest in flight feathers and weakest in coverts. Greatest changes in feathers are in the oldest flightless lineages like penguins, which show robust filaments (rachis, barbs, and barbules) on small feathers, and ratites, which show high interspecific diversity with plumulaceous filaments and/or filament loss. Phylogenetic comparative methods show that some of these microscopic feather traits, such as barb/barbule length and rachis width, are not as dramatically modified upon flight loss as are body mass increase and relative wing and tail fan reduction, whereas the effect on vane symmetry is more easily detected. Upon relaxing selection for flight, feathers do not soon significantly modify many of their flight adaptations, although increased vane symmetry is likely the most detectable shift. Feathers of recently flightless lineages are in many ways like those of their volant relatives. Feather microstructure evolution is often subtle in flightless taxa, except when flight loss is ancient, perhaps because developmental constraints act upon feathers and/or selection for novel feather morphologies is not strong. Changes in skeletomusculature of the flight apparatus are likely more evident in recently flightless taxa and may be a more reliable way to detect flight loss in fossils, with increased vane symmetry as potentially a microscopic signal. Finally, we see an intriguing, reversed pattern in feather evolution after flight loss from the pattern proposed in popular developmental models of feathers, with the later stages of feather development (asymmetric displacement of barb loci) being lost more readily, while early stages of development (e.g., differentiated barb ridges on follicle collar) are only lost after many millions of years of flightlessness.
Tyrannosaurs, giant predatory dinosaurs from the end of the Cretaceous, are among the most intensively researched and best-known groups of dinosaurs. Despite this, their relationships and systematics are highly controversial, and the... more
Tyrannosaurs, giant predatory dinosaurs from the end of the Cretaceous, are among the most intensively researched and best-known groups of dinosaurs. Despite this, their relationships and systematics are highly controversial, and the number of tyrannosaur species occurring in the latest Cretaceous in North America is debated. An ongoing debate concerns the status of Nanotyrannus lancensis, which has variously been interpreted as a distinct taxon of small-bodied tyrannosaur or a juvenile of the coeval Tyrannosaurus rex. Here, we review multiple lines of evidence and show that the totality of evidence strongly supports recognition of Nanotyrannus as a distinct species: 1. The high diversity of Late Cretaceous tyrannosaurs and predatory dinosaurs in general is consistent with the idea that more than one species lived in the late Maastrichtian of Western North America; 2. Nanotyrannus shows few if any diagnostic characters allowing referral specifically to Tyrannosaurus or even Tyrannosaurinae, but is differentiated from T. rex by at least 77 morphological characters, while intermediate forms, combining characteristics of Nanotyrannus and T. rex, remain unknown; 3. Histological evidence shows that individuals previously referred to Nanotyrannus lancensis show (i) skeletal fusions consistent with maturity, (ii) skull bone textures consistent with maturity, (iii) slow growth rates relative to T. rex, (iv) decelerating growth in their final years of life, and (v) growth curves predicting adult body sizes of ~1500 kg or less, implying that these animals are young adults, not juveniles of Tyrannosaurus; 4. Juveniles of other tyrannosaurids, including Gorgosaurus and Tarbosaurus, do not show the kinds of changes proposed for a Nanotyrannus-Tyrannosaurus growth series, suggesting the Nanotyrannus morphology cannot simply be explained as the result of immaturity; 5. Small T. rex exist, comparable in size to Nanotyrannus, which exhibit diagnostic features of Tyrannosaurus, and which differ from Nanotyrannus; 6. Phylogenetic analysis suggests that Nanotyrannus is not a tyrannosaurid. Taken together, the totality of the evidence rejects referral of Nanotyrannus to T. rex. Phylogenetic analysis tentatively supports placement of Nanotyrannus outside of Tyrannosauridae as a nontyrannosaurid member of Tyrannosauroidea. Tyrannosaur diversity appears to have been higher than previously appreciated in the latest Cretaceous before the K-Pg extinction. The difficulties in recognizing species based on fossils alone mean that paleontologists may be systematically biased towards underestimating the species diversity of ancient ecosystems.
Measures of bone compactness in amniote tetrapods of varying lifestyle were used to infer that two spinosaurid dinosaurs (Spinosaurus aegyptiacus, Baryonyx walkeri) were diving “subaqueous foragers,” whereas a third spinosaurid... more
Measures of bone compactness in amniote tetrapods of varying lifestyle were used to infer that two spinosaurid dinosaurs (Spinosaurus aegyptiacus, Baryonyx walkeri) were diving “subaqueous foragers,” whereas a third spinosaurid (Suchomimus tenerensis) and other sampled nonavian dinosaurs were non-diving terrestrial feeders entering water only as waders. We outline shortcomings in this analysis that involve bone compactness sampling and measurement, lifestyle categorization, the inclusion and exclusion of taxa in the dataset, and flawed statistical methods and inferences. These many shortcomings undermine the evidence used to conclude that two spinosaurid taxa were avid divers. Bone compactness indices remain a valuable tool for interpretation of lifestyle in extinct species when based on sound dataset composition, robust statistical analysis, and consilience with evidence from functional, biomechanical, or paleoenvironmental considerations.
Palaeocolour informs the ecology, physiology and behaviour of extinct animals. However, there is room for improvement in palaeocolour reconstructions due to poor understanding of the chemical changes occurring in pigmented soft tissues... more
Palaeocolour informs the ecology, physiology and behaviour of extinct animals. However, there is room for improvement in palaeocolour reconstructions due to poor understanding of the chemical changes occurring in pigmented soft tissues during fossilisation. Pressure-temperature maturation experiments are key to expanding our knowledge of pigmented soft-tissue preservation. Prior work on melanin has yielded limited insights in highly closed systems due to stable and volatile diagenetic products mixing and obscuring chemical analyses as well as in open systems because of the leaking and loss of samples. To replicate natural fossilisation, modern melanised feathers were encased in a porous bentonite clay matrix and subjected to a next-generation maturation system. Resultant samples closely resemble natural fossils both visually and chemically. Using mass spectrometry, increased crosslinking is identified within the overall melanin polymer alongside predictable loss of volatile nitrogen/sulphur bearing molecular groups with higher maturation temperatures for the first time, chemically simulating natural melanin diagenesis.
The Society of Vertebrate Paleontology has urged scientific journals to reject studies that use data from privately owned fossil collections. Here, I argue that the Society’s perspective on reproducibility in science is overly simplistic.... more
The Society of Vertebrate Paleontology has urged scientific journals to reject studies that use data from privately owned fossil collections. Here, I argue that the Society’s perspective on reproducibility in science is overly simplistic. Their suggested publication policy, at best, slows the progress of science and, at worst, permits scientific misconduct through a form of data falsification and provides a potential mechanism to bully and censor researchers. The best way to ensure the long-term survival of fossil data is to collect and publish the data while the specimens are available.
Rates of peptide bond hydrolysis and other diagenetic reactions are not favourable for Mesozoic protein survival. Proteins hydrolyse into peptide fragments and free amino acids that, in open systems such as bone, can leach from the... more
Rates of peptide bond hydrolysis and other diagenetic reactions are not favourable for Mesozoic protein survival. Proteins hydrolyse into peptide fragments and free amino acids that, in open systems such as bone, can leach from the specimen and be further degraded. However, closed systems are more likely to retain degradation products derived from endogenous proteins. Amino acid racemisation data in experimental and subfossil material suggests that mollusc shell and avian eggshell calcite crystals can demonstrate closed system behaviour, retaining endogenous amino acids. Here, high-performance liquid chromatography reveals that the intra-crystalline fraction of Late Cretaceous (estimated ~80 Ma) titanosaur sauropod eggshell is enriched in some of the most stable amino acids (Glx, Gly, Ala, and possibly Val) and those that racemise are fully racemic, despite being some of the slowest racemising amino acids. These results are consistent with degradation trends deduced from modern, thermally matured, sub-fossil, and ~3.8 Ma avian eggshell, as well as ~30 Ma calcitic mollusc opercula. Selective preservation of certain fully racemic amino acids, which do not racemise in-chain, along with similar concentrations of free versus total hydrolysable amino acids, likely suggests complete hydrolysis of original peptides. Liquid chromatography-tandem mass spectrometry supports this hypothesis by failing to detect any non-contamination peptide sequences from the Mesozoic eggshell. Pyrolysis-gas chromatography-mass spectrometry reveals pyrolysates consistent with amino acids as well as aliphatic hydrocarbon homologues that are not present in modern eggshell, suggestive of kerogen formation deriving from eggshell lipids. Raman spectroscopy yields bands consistent with various organic molecules, possibly including N-bearing molecules or geopolymers. These closed-system amino acids are possibly the most thoroughly supported non-avian dinosaur endogenous protein-derived constituents, at least those that have not undergone oxidative condensation with other classes of biomolecules. Biocrystal matrices can help preserve mobile organic molecules by trapping them (perhaps with the assistance of resistant organic polymers), but trapped organics are nevertheless prone to diagenetic degradation even if such reactions might be slowed in exceptional circumstances. The evidence for complete hydrolysis and degradation of most amino acids in the eggshell raises concern about the validity of reported polypeptide sequences from open-system non-avian dinosaur bone and other Mesozoic fossils.
Fossils were long thought to lack original organic material, but the discovery of organic molecules in fossils and sub-fossils, thousands to millions of years old, has demonstrated the potential of fossil organics to provide radical new... more
Fossils were long thought to lack original organic material, but the discovery of organic molecules in fossils and sub-fossils, thousands to millions of years old, has demonstrated the potential of fossil organics to provide radical new insights into the fossil record. How long different organics can persist remains unclear, however. Non-avian dinosaur bone has been hypothesised to preserve endogenous organics including collagen, osteocytes, and blood vessels, but proteins and labile lipids are unstable during diagenesis or over long periods of time. Furthermore, bone is porous and an open system, allowing microbial and organic flux. Some of these organics within fossil bone have therefore been identified as either contamination or microbial biofilm, rather than original organics. Here, we use biological and chemical analyses of Late Cretaceous dinosaur bones and sediment matrix to show that dinosaur bone hosts a diverse microbiome. Fossils and matrix were freshly-excavated, aseptically-acquired, and then analysed using microscopy, spectroscopy, chromatography, spectrometry, DNA extraction, and 16S rRNA amplicon sequencing. The fossil organics differ from modern bone collagen chemically and structurally. A key finding is that 16S rRNA amplicon sequencing reveals that the subterranean fossil bones host a unique, living microbiome distinct from that of the surrounding sediment. Even in the subsurface, dinosaur bone is biologically active and behaves as an open system, attracting microbes that might alter original organics or complicate the identification of original organics. These results suggest caution regarding claims of dinosaur bone ‘soft tissue’ preservation and illustrate a potential role for microbial communities in post-burial taphonomy.