Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
clang 20.0.0git
BackendUtil.cpp
Go to the documentation of this file.
1//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "BackendConsumer.h"
11#include "LinkInModulesPass.h"
19#include "llvm/ADT/ScopeExit.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringSwitch.h"
22#include "llvm/Analysis/GlobalsModRef.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Analysis/TargetTransformInfo.h"
25#include "llvm/Bitcode/BitcodeReader.h"
26#include "llvm/Bitcode/BitcodeWriter.h"
27#include "llvm/Bitcode/BitcodeWriterPass.h"
28#include "llvm/CodeGen/TargetSubtargetInfo.h"
29#include "llvm/Frontend/Driver/CodeGenOptions.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/LegacyPassManager.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/ModuleSummaryIndex.h"
35#include "llvm/IR/PassManager.h"
36#include "llvm/IR/Verifier.h"
37#include "llvm/IRPrinter/IRPrintingPasses.h"
38#include "llvm/LTO/LTOBackend.h"
39#include "llvm/MC/TargetRegistry.h"
40#include "llvm/Object/OffloadBinary.h"
41#include "llvm/Passes/PassBuilder.h"
42#include "llvm/Passes/PassPlugin.h"
43#include "llvm/Passes/StandardInstrumentations.h"
44#include "llvm/ProfileData/InstrProfCorrelator.h"
45#include "llvm/Support/BuryPointer.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/MemoryBuffer.h"
48#include "llvm/Support/PrettyStackTrace.h"
49#include "llvm/Support/Program.h"
50#include "llvm/Support/TimeProfiler.h"
51#include "llvm/Support/Timer.h"
52#include "llvm/Support/ToolOutputFile.h"
53#include "llvm/Support/VirtualFileSystem.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Target/TargetMachine.h"
56#include "llvm/Target/TargetOptions.h"
57#include "llvm/TargetParser/SubtargetFeature.h"
58#include "llvm/TargetParser/Triple.h"
59#include "llvm/Transforms/HipStdPar/HipStdPar.h"
60#include "llvm/Transforms/IPO/EmbedBitcodePass.h"
61#include "llvm/Transforms/IPO/LowerTypeTests.h"
62#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
63#include "llvm/Transforms/InstCombine/InstCombine.h"
64#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
65#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
66#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
67#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
68#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
69#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
70#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
71#include "llvm/Transforms/Instrumentation/KCFI.h"
72#include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h"
73#include "llvm/Transforms/Instrumentation/MemProfiler.h"
74#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
75#include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
76#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
77#include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h"
78#include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
79#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
80#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
81#include "llvm/Transforms/Instrumentation/TypeSanitizer.h"
82#include "llvm/Transforms/ObjCARC.h"
83#include "llvm/Transforms/Scalar/EarlyCSE.h"
84#include "llvm/Transforms/Scalar/GVN.h"
85#include "llvm/Transforms/Scalar/JumpThreading.h"
86#include "llvm/Transforms/Utils/Debugify.h"
87#include "llvm/Transforms/Utils/ModuleUtils.h"
88#include <limits>
89#include <memory>
90#include <optional>
91using namespace clang;
92using namespace llvm;
93
94#define HANDLE_EXTENSION(Ext) \
95 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
96#include "llvm/Support/Extension.def"
97
98namespace llvm {
99extern cl::opt<bool> PrintPipelinePasses;
100
101// Experiment to move sanitizers earlier.
102static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
103 "sanitizer-early-opt-ep", cl::Optional,
104 cl::desc("Insert sanitizers on OptimizerEarlyEP."));
105
106// Experiment to mark cold functions as optsize/minsize/optnone.
107// TODO: remove once this is exposed as a proper driver flag.
108static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr(
109 "pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden,
110 cl::desc(
111 "Function attribute to apply to cold functions as determined by PGO"),
112 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default",
113 "Default (no attribute)"),
114 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize",
115 "Mark cold functions with optsize."),
116 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize",
117 "Mark cold functions with minsize."),
118 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone",
119 "Mark cold functions with optnone.")));
120
121extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
122} // namespace llvm
123namespace clang {
124extern llvm::cl::opt<bool> ClSanitizeGuardChecks;
125}
126
127namespace {
128
129// Default filename used for profile generation.
130std::string getDefaultProfileGenName() {
131 return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE
132 ? "default_%m.proflite"
133 : "default_%m.profraw";
134}
135
136class EmitAssemblyHelper {
138 DiagnosticsEngine &Diags;
139 const CodeGenOptions &CodeGenOpts;
140 const clang::TargetOptions &TargetOpts;
141 const LangOptions &LangOpts;
142 llvm::Module *TheModule;
144
145 std::unique_ptr<raw_pwrite_stream> OS;
146
147 Triple TargetTriple;
148
149 TargetIRAnalysis getTargetIRAnalysis() const {
150 if (TM)
151 return TM->getTargetIRAnalysis();
152
153 return TargetIRAnalysis();
154 }
155
156 /// Generates the TargetMachine.
157 /// Leaves TM unchanged if it is unable to create the target machine.
158 /// Some of our clang tests specify triples which are not built
159 /// into clang. This is okay because these tests check the generated
160 /// IR, and they require DataLayout which depends on the triple.
161 /// In this case, we allow this method to fail and not report an error.
162 /// When MustCreateTM is used, we print an error if we are unable to load
163 /// the requested target.
164 void CreateTargetMachine(bool MustCreateTM);
165
166 /// Add passes necessary to emit assembly or LLVM IR.
167 ///
168 /// \return True on success.
169 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
170 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
171
172 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
173 std::error_code EC;
174 auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
175 llvm::sys::fs::OF_None);
176 if (EC) {
177 Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
178 F.reset();
179 }
180 return F;
181 }
182
183 void RunOptimizationPipeline(
184 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
185 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC);
186 void RunCodegenPipeline(BackendAction Action,
187 std::unique_ptr<raw_pwrite_stream> &OS,
188 std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
189
190 /// Check whether we should emit a module summary for regular LTO.
191 /// The module summary should be emitted by default for regular LTO
192 /// except for ld64 targets.
193 ///
194 /// \return True if the module summary should be emitted.
195 bool shouldEmitRegularLTOSummary() const {
196 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
197 TargetTriple.getVendor() != llvm::Triple::Apple;
198 }
199
200 /// Check whether we should emit a flag for UnifiedLTO.
201 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for
202 /// ThinLTO or Full LTO with module summaries.
203 bool shouldEmitUnifiedLTOModueFlag() const {
204 return CodeGenOpts.UnifiedLTO &&
205 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary());
206 }
207
208public:
209 EmitAssemblyHelper(CompilerInstance &CI, CodeGenOptions &CGOpts,
210 llvm::Module *M,
212 : CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CGOpts),
213 TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()),
214 TheModule(M), VFS(std::move(VFS)),
215 TargetTriple(TheModule->getTargetTriple()) {}
216
217 ~EmitAssemblyHelper() {
218 if (CodeGenOpts.DisableFree)
219 BuryPointer(std::move(TM));
220 }
221
222 std::unique_ptr<TargetMachine> TM;
223
224 // Emit output using the new pass manager for the optimization pipeline.
225 void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS,
226 BackendConsumer *BC);
227};
228} // namespace
229
230static SanitizerCoverageOptions
232 SanitizerCoverageOptions Opts;
233 Opts.CoverageType =
234 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
235 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
236 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
237 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
238 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
239 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
240 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
241 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
242 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
243 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
244 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
245 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
246 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
247 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
248 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
249 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
250 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
251 return Opts;
252}
253
254static SanitizerBinaryMetadataOptions
256 SanitizerBinaryMetadataOptions Opts;
257 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
258 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
259 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
260 return Opts;
261}
262
263// Check if ASan should use GC-friendly instrumentation for globals.
264// First of all, there is no point if -fdata-sections is off (expect for MachO,
265// where this is not a factor). Also, on ELF this feature requires an assembler
266// extension that only works with -integrated-as at the moment.
267static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
268 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
269 return false;
270 switch (T.getObjectFormat()) {
271 case Triple::MachO:
272 case Triple::COFF:
273 return true;
274 case Triple::ELF:
275 return !CGOpts.DisableIntegratedAS;
276 case Triple::GOFF:
277 llvm::report_fatal_error("ASan not implemented for GOFF");
278 case Triple::XCOFF:
279 llvm::report_fatal_error("ASan not implemented for XCOFF.");
280 case Triple::Wasm:
281 case Triple::DXContainer:
282 case Triple::SPIRV:
283 case Triple::UnknownObjectFormat:
284 break;
285 }
286 return false;
287}
288
289static std::optional<llvm::CodeModel::Model>
290getCodeModel(const CodeGenOptions &CodeGenOpts) {
291 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
292 .Case("tiny", llvm::CodeModel::Tiny)
293 .Case("small", llvm::CodeModel::Small)
294 .Case("kernel", llvm::CodeModel::Kernel)
295 .Case("medium", llvm::CodeModel::Medium)
296 .Case("large", llvm::CodeModel::Large)
297 .Case("default", ~1u)
298 .Default(~0u);
299 assert(CodeModel != ~0u && "invalid code model!");
300 if (CodeModel == ~1u)
301 return std::nullopt;
302 return static_cast<llvm::CodeModel::Model>(CodeModel);
303}
304
305static CodeGenFileType getCodeGenFileType(BackendAction Action) {
306 if (Action == Backend_EmitObj)
307 return CodeGenFileType::ObjectFile;
308 else if (Action == Backend_EmitMCNull)
309 return CodeGenFileType::Null;
310 else {
311 assert(Action == Backend_EmitAssembly && "Invalid action!");
312 return CodeGenFileType::AssemblyFile;
313 }
314}
315
317 return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
318 Action != Backend_EmitLL;
319}
320
322 StringRef MainFilename) {
323 if (Args.empty())
324 return std::string{};
325
326 std::string FlatCmdLine;
327 raw_string_ostream OS(FlatCmdLine);
328 bool PrintedOneArg = false;
329 if (!StringRef(Args[0]).contains("-cc1")) {
330 llvm::sys::printArg(OS, "-cc1", /*Quote=*/true);
331 PrintedOneArg = true;
332 }
333 for (unsigned i = 0; i < Args.size(); i++) {
334 StringRef Arg = Args[i];
335 if (Arg.empty())
336 continue;
337 if (Arg == "-main-file-name" || Arg == "-o") {
338 i++; // Skip this argument and next one.
339 continue;
340 }
341 if (Arg.starts_with("-object-file-name") || Arg == MainFilename)
342 continue;
343 // Skip fmessage-length for reproducibility.
344 if (Arg.starts_with("-fmessage-length"))
345 continue;
346 if (PrintedOneArg)
347 OS << " ";
348 llvm::sys::printArg(OS, Arg, /*Quote=*/true);
349 PrintedOneArg = true;
350 }
351 return FlatCmdLine;
352}
353
355 DiagnosticsEngine &Diags,
356 llvm::TargetOptions &Options) {
357 const auto &CodeGenOpts = CI.getCodeGenOpts();
358 const auto &TargetOpts = CI.getTargetOpts();
359 const auto &LangOpts = CI.getLangOpts();
360 const auto &HSOpts = CI.getHeaderSearchOpts();
361 switch (LangOpts.getThreadModel()) {
362 case LangOptions::ThreadModelKind::POSIX:
363 Options.ThreadModel = llvm::ThreadModel::POSIX;
364 break;
365 case LangOptions::ThreadModelKind::Single:
366 Options.ThreadModel = llvm::ThreadModel::Single;
367 break;
368 }
369
370 // Set float ABI type.
371 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
372 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
373 "Invalid Floating Point ABI!");
374 Options.FloatABIType =
375 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
376 .Case("soft", llvm::FloatABI::Soft)
377 .Case("softfp", llvm::FloatABI::Soft)
378 .Case("hard", llvm::FloatABI::Hard)
379 .Default(llvm::FloatABI::Default);
380
381 // Set FP fusion mode.
382 switch (LangOpts.getDefaultFPContractMode()) {
383 case LangOptions::FPM_Off:
384 // Preserve any contraction performed by the front-end. (Strict performs
385 // splitting of the muladd intrinsic in the backend.)
386 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
387 break;
388 case LangOptions::FPM_On:
389 case LangOptions::FPM_FastHonorPragmas:
390 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
391 break;
392 case LangOptions::FPM_Fast:
393 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
394 break;
395 }
396
397 Options.BinutilsVersion =
398 llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
399 Options.UseInitArray = CodeGenOpts.UseInitArray;
400 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
401
402 // Set EABI version.
403 Options.EABIVersion = TargetOpts.EABIVersion;
404
405 if (LangOpts.hasSjLjExceptions())
406 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
407 if (LangOpts.hasSEHExceptions())
408 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
409 if (LangOpts.hasDWARFExceptions())
410 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
411 if (LangOpts.hasWasmExceptions())
412 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
413
414 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
415 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
416 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
417 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
418 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
419 (LangOpts.getDefaultFPContractMode() ==
420 LangOptions::FPModeKind::FPM_Fast ||
421 LangOpts.getDefaultFPContractMode() ==
422 LangOptions::FPModeKind::FPM_FastHonorPragmas);
423 Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
424
425 Options.BBAddrMap = CodeGenOpts.BBAddrMap;
426 Options.BBSections =
427 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
428 .Case("all", llvm::BasicBlockSection::All)
429 .StartsWith("list=", llvm::BasicBlockSection::List)
430 .Case("none", llvm::BasicBlockSection::None)
431 .Default(llvm::BasicBlockSection::None);
432
433 if (Options.BBSections == llvm::BasicBlockSection::List) {
434 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
435 MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
436 if (!MBOrErr) {
437 Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
438 << MBOrErr.getError().message();
439 return false;
440 }
441 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
442 }
443
444 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
445 Options.FunctionSections = CodeGenOpts.FunctionSections;
446 Options.DataSections = CodeGenOpts.DataSections;
447 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
448 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
449 Options.UniqueBasicBlockSectionNames =
450 CodeGenOpts.UniqueBasicBlockSectionNames;
451 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections;
452 Options.TLSSize = CodeGenOpts.TLSSize;
453 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC;
454 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
455 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
456 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
457 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
458 Options.EmitAddrsig = CodeGenOpts.Addrsig;
459 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
460 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
461 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI;
462 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex;
463 Options.LoopAlignment = CodeGenOpts.LoopAlignment;
464 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
465 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
466 Options.Hotpatch = CodeGenOpts.HotPatch;
467 Options.JMCInstrument = CodeGenOpts.JMCInstrument;
468 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers;
469
470 switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
471 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
472 Options.SwiftAsyncFramePointer =
473 SwiftAsyncFramePointerMode::DeploymentBased;
474 break;
475
476 case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
477 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
478 break;
479
480 case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
481 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
482 break;
483 }
484
485 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
486 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
487 Options.MCOptions.EmitCompactUnwindNonCanonical =
488 CodeGenOpts.EmitCompactUnwindNonCanonical;
489 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
490 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
491 Options.MCOptions.MCUseDwarfDirectory =
492 CodeGenOpts.NoDwarfDirectoryAsm
493 ? llvm::MCTargetOptions::DisableDwarfDirectory
494 : llvm::MCTargetOptions::EnableDwarfDirectory;
495 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
496 Options.MCOptions.MCIncrementalLinkerCompatible =
497 CodeGenOpts.IncrementalLinkerCompatible;
498 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
499 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
500 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
501 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
502 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
503 Options.MCOptions.Crel = CodeGenOpts.Crel;
504 Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms;
505 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations;
506 Options.MCOptions.CompressDebugSections =
507 CodeGenOpts.getCompressDebugSections();
508 if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified
509 Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant;
510 Options.MCOptions.ABIName = TargetOpts.ABI;
511 for (const auto &Entry : HSOpts.UserEntries)
512 if (!Entry.IsFramework &&
513 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
514 Entry.Group == frontend::IncludeDirGroup::Angled ||
515 Entry.Group == frontend::IncludeDirGroup::System))
516 Options.MCOptions.IASSearchPaths.push_back(
517 Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
518 Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : "";
519 Options.MCOptions.CommandlineArgs = flattenClangCommandLine(
520 CodeGenOpts.CommandLineArgs, CodeGenOpts.MainFileName);
521 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
522 Options.MCOptions.PPCUseFullRegisterNames =
523 CodeGenOpts.PPCUseFullRegisterNames;
524 Options.MisExpect = CodeGenOpts.MisExpect;
525
526 return true;
527}
528
529static std::optional<GCOVOptions>
530getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
531 if (CodeGenOpts.CoverageNotesFile.empty() &&
532 CodeGenOpts.CoverageDataFile.empty())
533 return std::nullopt;
534 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
535 // LLVM's -default-gcov-version flag is set to something invalid.
536 GCOVOptions Options;
537 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty();
538 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty();
539 llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
540 Options.NoRedZone = CodeGenOpts.DisableRedZone;
541 Options.Filter = CodeGenOpts.ProfileFilterFiles;
542 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
543 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
544 return Options;
545}
546
547static std::optional<InstrProfOptions>
549 const LangOptions &LangOpts) {
550 if (!CodeGenOpts.hasProfileClangInstr())
551 return std::nullopt;
552 InstrProfOptions Options;
553 Options.NoRedZone = CodeGenOpts.DisableRedZone;
554 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
555 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
556 return Options;
557}
558
559static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
561 BackendArgs.push_back("clang"); // Fake program name.
562 if (!CodeGenOpts.DebugPass.empty()) {
563 BackendArgs.push_back("-debug-pass");
564 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
565 }
566 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
567 BackendArgs.push_back("-limit-float-precision");
568 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
569 }
570 // Check for the default "clang" invocation that won't set any cl::opt values.
571 // Skip trying to parse the command line invocation to avoid the issues
572 // described below.
573 if (BackendArgs.size() == 1)
574 return;
575 BackendArgs.push_back(nullptr);
576 // FIXME: The command line parser below is not thread-safe and shares a global
577 // state, so this call might crash or overwrite the options of another Clang
578 // instance in the same process.
579 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
580 BackendArgs.data());
581}
582
583void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
584 // Create the TargetMachine for generating code.
585 std::string Error;
586 std::string Triple = TheModule->getTargetTriple();
587 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
588 if (!TheTarget) {
589 if (MustCreateTM)
590 Diags.Report(diag::err_fe_unable_to_create_target) << Error;
591 return;
592 }
593
594 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
595 std::string FeaturesStr =
596 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
597 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
598 std::optional<CodeGenOptLevel> OptLevelOrNone =
599 CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel);
600 assert(OptLevelOrNone && "Invalid optimization level!");
601 CodeGenOptLevel OptLevel = *OptLevelOrNone;
602
603 llvm::TargetOptions Options;
604 if (!initTargetOptions(CI, Diags, Options))
605 return;
606 TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
607 Options, RM, CM, OptLevel));
608 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold);
609}
610
611bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
612 BackendAction Action,
613 raw_pwrite_stream &OS,
614 raw_pwrite_stream *DwoOS) {
615 // Add LibraryInfo.
616 std::unique_ptr<TargetLibraryInfoImpl> TLII(
617 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
618 CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
619
620 // Normal mode, emit a .s or .o file by running the code generator. Note,
621 // this also adds codegenerator level optimization passes.
622 CodeGenFileType CGFT = getCodeGenFileType(Action);
623
624 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
625 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
626 Diags.Report(diag::err_fe_unable_to_interface_with_target);
627 return false;
628 }
629
630 return true;
631}
632
633static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
634 switch (Opts.OptimizationLevel) {
635 default:
636 llvm_unreachable("Invalid optimization level!");
637
638 case 0:
639 return OptimizationLevel::O0;
640
641 case 1:
642 return OptimizationLevel::O1;
643
644 case 2:
645 switch (Opts.OptimizeSize) {
646 default:
647 llvm_unreachable("Invalid optimization level for size!");
648
649 case 0:
650 return OptimizationLevel::O2;
651
652 case 1:
653 return OptimizationLevel::Os;
654
655 case 2:
656 return OptimizationLevel::Oz;
657 }
658
659 case 3:
660 return OptimizationLevel::O3;
661 }
662}
663
664static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
665 PassBuilder &PB) {
666 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
667 if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
668 TargetTriple.isAArch64(64) || TargetTriple.isRISCV())
669 return;
670
671 // Ensure we lower KCFI operand bundles with -O0.
672 PB.registerOptimizerLastEPCallback(
673 [&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) {
674 if (Level == OptimizationLevel::O0 &&
675 LangOpts.Sanitize.has(SanitizerKind::KCFI))
676 MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass()));
677 });
678
679 // When optimizations are requested, run KCIFPass after InstCombine to
680 // avoid unnecessary checks.
681 PB.registerPeepholeEPCallback(
682 [&](FunctionPassManager &FPM, OptimizationLevel Level) {
683 if (Level != OptimizationLevel::O0 &&
684 LangOpts.Sanitize.has(SanitizerKind::KCFI))
685 FPM.addPass(KCFIPass());
686 });
687}
688
689static void addSanitizers(const Triple &TargetTriple,
690 const CodeGenOptions &CodeGenOpts,
691 const LangOptions &LangOpts, PassBuilder &PB) {
692 auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level,
693 ThinOrFullLTOPhase) {
694 if (CodeGenOpts.hasSanitizeCoverage()) {
695 auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
696 MPM.addPass(SanitizerCoveragePass(
697 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
699 }
700
701 if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
702 MPM.addPass(SanitizerBinaryMetadataPass(
705 }
706
707 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
708 if (LangOpts.Sanitize.has(Mask)) {
709 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
710 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
711
712 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
713 CodeGenOpts.SanitizeMemoryParamRetval);
714 MPM.addPass(MemorySanitizerPass(options));
715 if (Level != OptimizationLevel::O0) {
716 // MemorySanitizer inserts complex instrumentation that mostly follows
717 // the logic of the original code, but operates on "shadow" values. It
718 // can benefit from re-running some general purpose optimization
719 // passes.
720 MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
721 FunctionPassManager FPM;
722 FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
723 FPM.addPass(InstCombinePass());
724 FPM.addPass(JumpThreadingPass());
725 FPM.addPass(GVNPass());
726 FPM.addPass(InstCombinePass());
727 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
728 }
729 }
730 };
731 MSanPass(SanitizerKind::Memory, false);
732 MSanPass(SanitizerKind::KernelMemory, true);
733
734 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
735 MPM.addPass(ModuleThreadSanitizerPass());
736 MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
737 }
738
739 if (LangOpts.Sanitize.has(SanitizerKind::Type))
740 MPM.addPass(TypeSanitizerPass());
741
742 if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability))
743 MPM.addPass(NumericalStabilitySanitizerPass());
744
745 if (LangOpts.Sanitize.has(SanitizerKind::Realtime))
746 MPM.addPass(RealtimeSanitizerPass());
747
748 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
749 if (LangOpts.Sanitize.has(Mask)) {
750 bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
751 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
752 llvm::AsanDtorKind DestructorKind =
753 CodeGenOpts.getSanitizeAddressDtor();
754 AddressSanitizerOptions Opts;
755 Opts.CompileKernel = CompileKernel;
756 Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
757 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
758 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
759 MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
760 DestructorKind));
761 }
762 };
763 ASanPass(SanitizerKind::Address, false);
764 ASanPass(SanitizerKind::KernelAddress, true);
765
766 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
767 if (LangOpts.Sanitize.has(Mask)) {
768 bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
769 MPM.addPass(HWAddressSanitizerPass(
770 {CompileKernel, Recover,
771 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
772 }
773 };
774 HWASanPass(SanitizerKind::HWAddress, false);
775 HWASanPass(SanitizerKind::KernelHWAddress, true);
776
777 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
778 MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
779 }
780 };
782 PB.registerOptimizerEarlyEPCallback(
783 [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level,
784 ThinOrFullLTOPhase Phase) {
785 ModulePassManager NewMPM;
786 SanitizersCallback(NewMPM, Level, Phase);
787 if (!NewMPM.isEmpty()) {
788 // Sanitizers can abandon<GlobalsAA>.
789 NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
790 MPM.addPass(std::move(NewMPM));
791 }
792 });
793 } else {
794 // LastEP does not need GlobalsAA.
795 PB.registerOptimizerLastEPCallback(SanitizersCallback);
796 }
797
798 if (LowerAllowCheckPass::IsRequested()) {
799 // We want to call it after inline, which is about OptimizerEarlyEPCallback.
800 PB.registerOptimizerEarlyEPCallback([&](ModulePassManager &MPM,
801 OptimizationLevel Level,
802 ThinOrFullLTOPhase Phase) {
803 LowerAllowCheckPass::Options Opts;
804 MPM.addPass(createModuleToFunctionPassAdaptor(LowerAllowCheckPass(Opts)));
805 });
806 }
807}
808
809void EmitAssemblyHelper::RunOptimizationPipeline(
810 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
811 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) {
812 std::optional<PGOOptions> PGOOpt;
813
814 if (CodeGenOpts.hasProfileIRInstr())
815 // -fprofile-generate.
816 PGOOpt = PGOOptions(
817 CodeGenOpts.InstrProfileOutput.empty() ? getDefaultProfileGenName()
818 : CodeGenOpts.InstrProfileOutput,
819 "", "", CodeGenOpts.MemoryProfileUsePath, nullptr, PGOOptions::IRInstr,
820 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
821 CodeGenOpts.DebugInfoForProfiling,
822 /*PseudoProbeForProfiling=*/false, CodeGenOpts.AtomicProfileUpdate);
823 else if (CodeGenOpts.hasProfileIRUse()) {
824 // -fprofile-use.
825 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
826 : PGOOptions::NoCSAction;
827 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
828 CodeGenOpts.ProfileRemappingFile,
829 CodeGenOpts.MemoryProfileUsePath, VFS,
830 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr,
831 CodeGenOpts.DebugInfoForProfiling);
832 } else if (!CodeGenOpts.SampleProfileFile.empty())
833 // -fprofile-sample-use
834 PGOOpt = PGOOptions(
835 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
836 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse,
837 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
838 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
839 else if (!CodeGenOpts.MemoryProfileUsePath.empty())
840 // -fmemory-profile-use (without any of the above options)
841 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS,
842 PGOOptions::NoAction, PGOOptions::NoCSAction,
843 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
844 else if (CodeGenOpts.PseudoProbeForProfiling)
845 // -fpseudo-probe-for-profiling
846 PGOOpt =
847 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
848 PGOOptions::NoAction, PGOOptions::NoCSAction,
849 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true);
850 else if (CodeGenOpts.DebugInfoForProfiling)
851 // -fdebug-info-for-profiling
852 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
853 PGOOptions::NoAction, PGOOptions::NoCSAction,
854 ClPGOColdFuncAttr, true);
855
856 // Check to see if we want to generate a CS profile.
857 if (CodeGenOpts.hasProfileCSIRInstr()) {
858 assert(!CodeGenOpts.hasProfileCSIRUse() &&
859 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
860 "the same time");
861 if (PGOOpt) {
862 assert(PGOOpt->Action != PGOOptions::IRInstr &&
863 PGOOpt->Action != PGOOptions::SampleUse &&
864 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
865 " pass");
866 PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
867 ? getDefaultProfileGenName()
868 : CodeGenOpts.InstrProfileOutput;
869 PGOOpt->CSAction = PGOOptions::CSIRInstr;
870 } else
871 PGOOpt = PGOOptions("",
872 CodeGenOpts.InstrProfileOutput.empty()
873 ? getDefaultProfileGenName()
874 : CodeGenOpts.InstrProfileOutput,
875 "", /*MemoryProfile=*/"", nullptr,
876 PGOOptions::NoAction, PGOOptions::CSIRInstr,
877 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
878 }
879 if (TM)
880 TM->setPGOOption(PGOOpt);
881
882 PipelineTuningOptions PTO;
883 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
884 // For historical reasons, loop interleaving is set to mirror setting for loop
885 // unrolling.
886 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
887 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
888 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
889 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
890 // Only enable CGProfilePass when using integrated assembler, since
891 // non-integrated assemblers don't recognize .cgprofile section.
892 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
893 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO;
894
895 LoopAnalysisManager LAM;
896 FunctionAnalysisManager FAM;
897 CGSCCAnalysisManager CGAM;
898 ModuleAnalysisManager MAM;
899
900 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
901 PassInstrumentationCallbacks PIC;
902 PrintPassOptions PrintPassOpts;
903 PrintPassOpts.Indent = DebugPassStructure;
904 PrintPassOpts.SkipAnalyses = DebugPassStructure;
905 StandardInstrumentations SI(
906 TheModule->getContext(),
907 (CodeGenOpts.DebugPassManager || DebugPassStructure),
908 CodeGenOpts.VerifyEach, PrintPassOpts);
909 SI.registerCallbacks(PIC, &MAM);
910 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
911
912 // Handle the assignment tracking feature options.
913 switch (CodeGenOpts.getAssignmentTrackingMode()) {
914 case CodeGenOptions::AssignmentTrackingOpts::Forced:
915 PB.registerPipelineStartEPCallback(
916 [&](ModulePassManager &MPM, OptimizationLevel Level) {
917 MPM.addPass(AssignmentTrackingPass());
918 });
919 break;
920 case CodeGenOptions::AssignmentTrackingOpts::Enabled:
921 // Disable assignment tracking in LTO builds for now as the performance
922 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126.
923 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO &&
924 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) {
925 PB.registerPipelineStartEPCallback(
926 [&](ModulePassManager &MPM, OptimizationLevel Level) {
927 // Only use assignment tracking if optimisations are enabled.
928 if (Level != OptimizationLevel::O0)
929 MPM.addPass(AssignmentTrackingPass());
930 });
931 }
932 break;
933 case CodeGenOptions::AssignmentTrackingOpts::Disabled:
934 break;
935 }
936
937 // Enable verify-debuginfo-preserve-each for new PM.
938 DebugifyEachInstrumentation Debugify;
939 DebugInfoPerPass DebugInfoBeforePass;
940 if (CodeGenOpts.EnableDIPreservationVerify) {
941 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
942 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
943
944 if (!CodeGenOpts.DIBugsReportFilePath.empty())
945 Debugify.setOrigDIVerifyBugsReportFilePath(
946 CodeGenOpts.DIBugsReportFilePath);
947 Debugify.registerCallbacks(PIC, MAM);
948 }
949 // Attempt to load pass plugins and register their callbacks with PB.
950 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
951 auto PassPlugin = PassPlugin::Load(PluginFN);
952 if (PassPlugin) {
953 PassPlugin->registerPassBuilderCallbacks(PB);
954 } else {
955 Diags.Report(diag::err_fe_unable_to_load_plugin)
956 << PluginFN << toString(PassPlugin.takeError());
957 }
958 }
959 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks)
960 PassCallback(PB);
961#define HANDLE_EXTENSION(Ext) \
962 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
963#include "llvm/Support/Extension.def"
964
965 // Register the target library analysis directly and give it a customized
966 // preset TLI.
967 std::unique_ptr<TargetLibraryInfoImpl> TLII(
968 llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
969 FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
970
971 // Register all the basic analyses with the managers.
972 PB.registerModuleAnalyses(MAM);
973 PB.registerCGSCCAnalyses(CGAM);
974 PB.registerFunctionAnalyses(FAM);
975 PB.registerLoopAnalyses(LAM);
976 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
977
978 ModulePassManager MPM;
979 // Add a verifier pass, before any other passes, to catch CodeGen issues.
980 if (CodeGenOpts.VerifyModule)
981 MPM.addPass(VerifierPass());
982
983 if (!CodeGenOpts.DisableLLVMPasses) {
984 // Map our optimization levels into one of the distinct levels used to
985 // configure the pipeline.
986 OptimizationLevel Level = mapToLevel(CodeGenOpts);
987
988 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
989 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO;
990
991 if (LangOpts.ObjCAutoRefCount) {
992 PB.registerPipelineStartEPCallback(
993 [](ModulePassManager &MPM, OptimizationLevel Level) {
994 if (Level != OptimizationLevel::O0)
995 MPM.addPass(
996 createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
997 });
998 PB.registerPipelineEarlySimplificationEPCallback(
999 [](ModulePassManager &MPM, OptimizationLevel Level,
1000 ThinOrFullLTOPhase) {
1001 if (Level != OptimizationLevel::O0)
1002 MPM.addPass(ObjCARCAPElimPass());
1003 });
1004 PB.registerScalarOptimizerLateEPCallback(
1005 [](FunctionPassManager &FPM, OptimizationLevel Level) {
1006 if (Level != OptimizationLevel::O0)
1007 FPM.addPass(ObjCARCOptPass());
1008 });
1009 }
1010
1011 // If we reached here with a non-empty index file name, then the index
1012 // file was empty and we are not performing ThinLTO backend compilation
1013 // (used in testing in a distributed build environment).
1014 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
1015 // If so drop any the type test assume sequences inserted for whole program
1016 // vtables so that codegen doesn't complain.
1017 if (IsThinLTOPostLink)
1018 PB.registerPipelineStartEPCallback(
1019 [](ModulePassManager &MPM, OptimizationLevel Level) {
1020 MPM.addPass(LowerTypeTestsPass(
1021 /*ExportSummary=*/nullptr,
1022 /*ImportSummary=*/nullptr,
1023 /*DropTypeTests=*/lowertypetests::DropTestKind::Assume));
1024 });
1025
1026 // Register callbacks to schedule sanitizer passes at the appropriate part
1027 // of the pipeline.
1028 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
1029 PB.registerScalarOptimizerLateEPCallback([this](FunctionPassManager &FPM,
1030 OptimizationLevel Level) {
1031 BoundsCheckingPass::Options Options;
1032 if (CodeGenOpts.SanitizeSkipHotCutoffs[SanitizerKind::SO_LocalBounds] ||
1034 static_assert(SanitizerKind::SO_LocalBounds <=
1035 std::numeric_limits<
1036 decltype(Options.GuardKind)::value_type>::max(),
1037 "Update type of llvm.allow.ubsan.check to represent "
1038 "SanitizerKind::SO_LocalBounds.");
1039 Options.GuardKind = SanitizerKind::SO_LocalBounds;
1040 }
1041 Options.Merge =
1042 CodeGenOpts.SanitizeMergeHandlers.has(SanitizerKind::LocalBounds);
1043 if (!CodeGenOpts.SanitizeTrap.has(SanitizerKind::LocalBounds)) {
1044 Options.Rt = {
1045 /*MinRuntime=*/static_cast<bool>(
1046 CodeGenOpts.SanitizeMinimalRuntime),
1047 /*MayReturn=*/
1048 CodeGenOpts.SanitizeRecover.has(SanitizerKind::LocalBounds),
1049 };
1050 }
1051 FPM.addPass(BoundsCheckingPass(Options));
1052 });
1053
1054 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
1055 // done on PreLink stage.
1056 if (!IsThinLTOPostLink) {
1057 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
1058 addKCFIPass(TargetTriple, LangOpts, PB);
1059 }
1060
1061 if (std::optional<GCOVOptions> Options =
1062 getGCOVOptions(CodeGenOpts, LangOpts))
1063 PB.registerPipelineStartEPCallback(
1064 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1065 MPM.addPass(GCOVProfilerPass(*Options));
1066 });
1067 if (std::optional<InstrProfOptions> Options =
1068 getInstrProfOptions(CodeGenOpts, LangOpts))
1069 PB.registerPipelineStartEPCallback(
1070 [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1071 MPM.addPass(InstrProfilingLoweringPass(*Options, false));
1072 });
1073
1074 // TODO: Consider passing the MemoryProfileOutput to the pass builder via
1075 // the PGOOptions, and set this up there.
1076 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1077 PB.registerOptimizerLastEPCallback([](ModulePassManager &MPM,
1078 OptimizationLevel Level,
1079 ThinOrFullLTOPhase) {
1080 MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
1081 MPM.addPass(ModuleMemProfilerPass());
1082 });
1083 }
1084
1085 if (CodeGenOpts.FatLTO) {
1086 MPM.addPass(PB.buildFatLTODefaultPipeline(
1087 Level, PrepareForThinLTO,
1088 PrepareForThinLTO || shouldEmitRegularLTOSummary()));
1089 } else if (PrepareForThinLTO) {
1090 MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level));
1091 } else if (PrepareForLTO) {
1092 MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level));
1093 } else {
1094 MPM.addPass(PB.buildPerModuleDefaultPipeline(Level));
1095 }
1096 }
1097
1098 // Link against bitcodes supplied via the -mlink-builtin-bitcode option
1099 if (CodeGenOpts.LinkBitcodePostopt)
1100 MPM.addPass(LinkInModulesPass(BC));
1101
1102 // Add a verifier pass if requested. We don't have to do this if the action
1103 // requires code generation because there will already be a verifier pass in
1104 // the code-generation pipeline.
1105 // Since we already added a verifier pass above, this
1106 // might even not run the analysis, if previous passes caused no changes.
1107 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
1108 MPM.addPass(VerifierPass());
1109
1110 if (Action == Backend_EmitBC || Action == Backend_EmitLL ||
1111 CodeGenOpts.FatLTO) {
1112 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1113 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1114 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1115 CodeGenOpts.EnableSplitLTOUnit);
1116 if (Action == Backend_EmitBC) {
1117 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1118 ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
1119 if (!ThinLinkOS)
1120 return;
1121 }
1122 MPM.addPass(ThinLTOBitcodeWriterPass(
1123 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
1124 } else if (Action == Backend_EmitLL) {
1125 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1126 /*EmitLTOSummary=*/true));
1127 }
1128 } else {
1129 // Emit a module summary by default for Regular LTO except for ld64
1130 // targets
1131 bool EmitLTOSummary = shouldEmitRegularLTOSummary();
1132 if (EmitLTOSummary) {
1133 if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO)
1134 TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0));
1135 if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
1136 TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
1137 uint32_t(1));
1138 }
1139 if (Action == Backend_EmitBC) {
1140 MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1141 EmitLTOSummary));
1142 } else if (Action == Backend_EmitLL) {
1143 MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1144 EmitLTOSummary));
1145 }
1146 }
1147
1148 if (shouldEmitUnifiedLTOModueFlag())
1149 TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1));
1150 }
1151
1152 // FIXME: This should eventually be replaced by a first-class driver option.
1153 // This should be done for both clang and flang simultaneously.
1154 // Print a textual, '-passes=' compatible, representation of pipeline if
1155 // requested.
1156 if (PrintPipelinePasses) {
1157 MPM.printPipeline(outs(), [&PIC](StringRef ClassName) {
1158 auto PassName = PIC.getPassNameForClassName(ClassName);
1159 return PassName.empty() ? ClassName : PassName;
1160 });
1161 outs() << "\n";
1162 return;
1163 }
1164
1165 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice &&
1166 LangOpts.HIPStdParInterposeAlloc)
1167 MPM.addPass(HipStdParAllocationInterpositionPass());
1168
1169 // Now that we have all of the passes ready, run them.
1170 {
1171 PrettyStackTraceString CrashInfo("Optimizer");
1172 llvm::TimeTraceScope TimeScope("Optimizer");
1173 Timer timer;
1174 if (CI.getCodeGenOpts().TimePasses) {
1175 timer.init("optimizer", "Optimizer", CI.getTimerGroup());
1176 CI.getFrontendTimer().yieldTo(timer);
1177 }
1178 MPM.run(*TheModule, MAM);
1179 if (CI.getCodeGenOpts().TimePasses)
1180 timer.yieldTo(CI.getFrontendTimer());
1181 }
1182}
1183
1184void EmitAssemblyHelper::RunCodegenPipeline(
1185 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
1186 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
1187 // We still use the legacy PM to run the codegen pipeline since the new PM
1188 // does not work with the codegen pipeline.
1189 // FIXME: make the new PM work with the codegen pipeline.
1190 legacy::PassManager CodeGenPasses;
1191
1192 // Append any output we need to the pass manager.
1193 switch (Action) {
1195 case Backend_EmitMCNull:
1196 case Backend_EmitObj:
1197 CodeGenPasses.add(
1198 createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
1199 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1200 DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
1201 if (!DwoOS)
1202 return;
1203 }
1204 if (!AddEmitPasses(CodeGenPasses, Action, *OS,
1205 DwoOS ? &DwoOS->os() : nullptr))
1206 // FIXME: Should we handle this error differently?
1207 return;
1208 break;
1209 default:
1210 return;
1211 }
1212
1213 // If -print-pipeline-passes is requested, don't run the legacy pass manager.
1214 // FIXME: when codegen is switched to use the new pass manager, it should also
1215 // emit pass names here.
1216 if (PrintPipelinePasses) {
1217 return;
1218 }
1219
1220 {
1221 PrettyStackTraceString CrashInfo("Code generation");
1222 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1223 Timer timer;
1224 if (CI.getCodeGenOpts().TimePasses) {
1225 timer.init("codegen", "Machine code generation", CI.getTimerGroup());
1226 CI.getFrontendTimer().yieldTo(timer);
1227 }
1228 CodeGenPasses.run(*TheModule);
1229 if (CI.getCodeGenOpts().TimePasses)
1230 timer.yieldTo(CI.getFrontendTimer());
1231 }
1232}
1233
1234void EmitAssemblyHelper::emitAssembly(BackendAction Action,
1235 std::unique_ptr<raw_pwrite_stream> OS,
1236 BackendConsumer *BC) {
1237 setCommandLineOpts(CodeGenOpts);
1238
1239 bool RequiresCodeGen = actionRequiresCodeGen(Action);
1240 CreateTargetMachine(RequiresCodeGen);
1241
1242 if (RequiresCodeGen && !TM)
1243 return;
1244 if (TM)
1245 TheModule->setDataLayout(TM->createDataLayout());
1246
1247 // Before executing passes, print the final values of the LLVM options.
1248 cl::PrintOptionValues();
1249
1250 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1251 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC);
1252 RunCodegenPipeline(Action, OS, DwoOS);
1253
1254 if (ThinLinkOS)
1255 ThinLinkOS->keep();
1256 if (DwoOS)
1257 DwoOS->keep();
1258}
1259
1260static void
1261runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex,
1262 llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS,
1263 std::string SampleProfile, std::string ProfileRemapping,
1264 BackendAction Action) {
1265 DiagnosticsEngine &Diags = CI.getDiagnostics();
1266 const auto &CGOpts = CI.getCodeGenOpts();
1267 const auto &TOpts = CI.getTargetOpts();
1268 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1269 ModuleToDefinedGVSummaries;
1270 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1271
1272 setCommandLineOpts(CGOpts);
1273
1274 // We can simply import the values mentioned in the combined index, since
1275 // we should only invoke this using the individual indexes written out
1276 // via a WriteIndexesThinBackend.
1277 FunctionImporter::ImportIDTable ImportIDs;
1278 FunctionImporter::ImportMapTy ImportList(ImportIDs);
1279 if (!lto::initImportList(*M, *CombinedIndex, ImportList))
1280 return;
1281
1282 auto AddStream = [&](size_t Task, const Twine &ModuleName) {
1283 return std::make_unique<CachedFileStream>(std::move(OS),
1284 CGOpts.ObjectFilenameForDebug);
1285 };
1286 lto::Config Conf;
1287 if (CGOpts.SaveTempsFilePrefix != "") {
1288 if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
1289 /* UseInputModulePath */ false)) {
1290 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1291 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1292 << '\n';
1293 });
1294 }
1295 }
1296 Conf.CPU = TOpts.CPU;
1297 Conf.CodeModel = getCodeModel(CGOpts);
1298 Conf.MAttrs = TOpts.Features;
1299 Conf.RelocModel = CGOpts.RelocationModel;
1300 std::optional<CodeGenOptLevel> OptLevelOrNone =
1301 CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
1302 assert(OptLevelOrNone && "Invalid optimization level!");
1303 Conf.CGOptLevel = *OptLevelOrNone;
1304 Conf.OptLevel = CGOpts.OptimizationLevel;
1305 initTargetOptions(CI, Diags, Conf.Options);
1306 Conf.SampleProfile = std::move(SampleProfile);
1307 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1308 // For historical reasons, loop interleaving is set to mirror setting for loop
1309 // unrolling.
1310 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1311 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1312 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1313 // Only enable CGProfilePass when using integrated assembler, since
1314 // non-integrated assemblers don't recognize .cgprofile section.
1315 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1316
1317 // Context sensitive profile.
1318 if (CGOpts.hasProfileCSIRInstr()) {
1319 Conf.RunCSIRInstr = true;
1320 Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
1321 } else if (CGOpts.hasProfileCSIRUse()) {
1322 Conf.RunCSIRInstr = false;
1323 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1324 }
1325
1326 Conf.ProfileRemapping = std::move(ProfileRemapping);
1327 Conf.DebugPassManager = CGOpts.DebugPassManager;
1328 Conf.VerifyEach = CGOpts.VerifyEach;
1329 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1330 Conf.RemarksFilename = CGOpts.OptRecordFile;
1331 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1332 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1333 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1334 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1335 switch (Action) {
1337 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) {
1338 return false;
1339 };
1340 break;
1341 case Backend_EmitLL:
1342 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1343 M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1344 return false;
1345 };
1346 break;
1347 case Backend_EmitBC:
1348 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1349 WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
1350 return false;
1351 };
1352 break;
1353 default:
1354 Conf.CGFileType = getCodeGenFileType(Action);
1355 break;
1356 }
1357 if (Error E =
1358 thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
1359 ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1360 /*ModuleMap=*/nullptr, Conf.CodeGenOnly,
1361 /*IRAddStream=*/nullptr, CGOpts.CmdArgs)) {
1362 handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1363 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1364 });
1365 }
1366}
1367
1369 StringRef TDesc, llvm::Module *M,
1370 BackendAction Action,
1372 std::unique_ptr<raw_pwrite_stream> OS,
1373 BackendConsumer *BC) {
1374 llvm::TimeTraceScope TimeScope("Backend");
1375 DiagnosticsEngine &Diags = CI.getDiagnostics();
1376
1377 std::unique_ptr<llvm::Module> EmptyModule;
1378 if (!CGOpts.ThinLTOIndexFile.empty()) {
1379 // If we are performing a ThinLTO importing compile, load the function index
1380 // into memory and pass it into runThinLTOBackend, which will run the
1381 // function importer and invoke LTO passes.
1382 std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
1383 if (Error E = llvm::getModuleSummaryIndexForFile(
1384 CGOpts.ThinLTOIndexFile,
1385 /*IgnoreEmptyThinLTOIndexFile*/ true)
1386 .moveInto(CombinedIndex)) {
1387 logAllUnhandledErrors(std::move(E), errs(),
1388 "Error loading index file '" +
1389 CGOpts.ThinLTOIndexFile + "': ");
1390 return;
1391 }
1392
1393 // A null CombinedIndex means we should skip ThinLTO compilation
1394 // (LLVM will optionally ignore empty index files, returning null instead
1395 // of an error).
1396 if (CombinedIndex) {
1397 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1398 runThinLTOBackend(CI, CombinedIndex.get(), M, std::move(OS),
1400 Action);
1401 return;
1402 }
1403 // Distributed indexing detected that nothing from the module is needed
1404 // for the final linking. So we can skip the compilation. We sill need to
1405 // output an empty object file to make sure that a linker does not fail
1406 // trying to read it. Also for some features, like CFI, we must skip
1407 // the compilation as CombinedIndex does not contain all required
1408 // information.
1409 EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
1410 EmptyModule->setTargetTriple(M->getTargetTriple());
1411 M = EmptyModule.get();
1412 }
1413 }
1414
1415 EmitAssemblyHelper AsmHelper(CI, CGOpts, M, VFS);
1416 AsmHelper.emitAssembly(Action, std::move(OS), BC);
1417
1418 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1419 // DataLayout.
1420 if (AsmHelper.TM) {
1421 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1422 if (DLDesc != TDesc) {
1423 unsigned DiagID = Diags.getCustomDiagID(
1424 DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1425 "expected target description '%1'");
1426 Diags.Report(DiagID) << DLDesc << TDesc;
1427 }
1428 }
1429}
1430
1431// With -fembed-bitcode, save a copy of the llvm IR as data in the
1432// __LLVM,__bitcode section.
1433void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1434 llvm::MemoryBufferRef Buf) {
1435 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1436 return;
1437 llvm::embedBitcodeInModule(
1438 *M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1439 CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1440 CGOpts.CmdArgs);
1441}
1442
1443void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
1444 DiagnosticsEngine &Diags) {
1445 if (CGOpts.OffloadObjects.empty())
1446 return;
1447
1448 for (StringRef OffloadObject : CGOpts.OffloadObjects) {
1449 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
1450 llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject);
1451 if (ObjectOrErr.getError()) {
1452 auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1453 "could not open '%0' for embedding");
1454 Diags.Report(DiagID) << OffloadObject;
1455 return;
1456 }
1457
1458 llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading",
1459 Align(object::OffloadBinary::getAlignment()));
1460 }
1461}
static bool actionRequiresCodeGen(BackendAction Action)
static void addSanitizers(const Triple &TargetTriple, const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts, PassBuilder &PB)
static std::optional< llvm::CodeModel::Model > getCodeModel(const CodeGenOptions &CodeGenOpts)
static void runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex, llvm::Module *M, std::unique_ptr< raw_pwrite_stream > OS, std::string SampleProfile, std::string ProfileRemapping, BackendAction Action)
static SanitizerBinaryMetadataOptions getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts)
static std::optional< GCOVOptions > getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts)
static bool initTargetOptions(const CompilerInstance &CI, DiagnosticsEngine &Diags, llvm::TargetOptions &Options)
static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts, PassBuilder &PB)
static SanitizerCoverageOptions getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts)
static OptimizationLevel mapToLevel(const CodeGenOptions &Opts)
static std::optional< InstrProfOptions > getInstrProfOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts)
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts)
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts)
static CodeGenFileType getCodeGenFileType(BackendAction Action)
static std::string flattenClangCommandLine(ArrayRef< std::string > Args, StringRef MainFilename)
Defines the Diagnostic-related interfaces.
IndirectLocalPath & Path
Expr * E
Defines the clang::LangOptions interface.
This file provides a pass to link in Modules from a provided BackendConsumer.
static std::string toString(const clang::SanitizerSet &Sanitizers)
Produce a string containing comma-separated names of sanitizers in Sanitizers set.
static bool contains(const std::set< tok::TokenKind > &Terminators, const Token &Tok)
Definition: SourceCode.cpp:201
Defines the clang::TargetOptions class.
CodeGenOptions - Track various options which control how the code is optimized and passed to the back...
SanitizerSet SanitizeMergeHandlers
Set of sanitizer checks that can merge handlers (smaller code size at the expense of debuggability).
std::string InstrProfileOutput
Name of the profile file to use as output for -fprofile-instr-generate, -fprofile-generate,...
std::string BinutilsVersion
bool hasProfileIRUse() const
Check if IR level profile use is on.
char CoverageVersion[4]
The version string to put into coverage files.
std::string FloatABI
The ABI to use for passing floating point arguments.
std::string ThinLinkBitcodeFile
Name of a file that can optionally be written with minimized bitcode to be used as input for the Thin...
bool hasProfileCSIRInstr() const
Check if CS IR level profile instrumentation is on.
std::string DebugPass
Enable additional debugging information.
llvm::Reloc::Model RelocationModel
The name of the relocation model to use.
std::string CoverageNotesFile
The filename with path we use for coverage notes files.
std::string ProfileInstrumentUsePath
Name of the profile file to use as input for -fprofile-instr-use.
std::string SampleProfileFile
Name of the profile file to use with -fprofile-sample-use.
uint64_t LargeDataThreshold
The code model-specific large data threshold to use (-mlarge-data-threshold).
std::string MemoryProfileOutput
Name of the profile file to use as output for with -fmemory-profile.
std::vector< std::function< void(llvm::PassBuilder &)> > PassBuilderCallbacks
List of pass builder callbacks.
std::string LimitFloatPrecision
The float precision limit to use, if non-empty.
std::string CodeModel
The code model to use (-mcmodel).
std::string CoverageDataFile
The filename with path we use for coverage data files.
std::vector< std::string > PassPlugins
List of dynamic shared object files to be loaded as pass plugins.
bool hasProfileClangInstr() const
Check if Clang profile instrumenation is on.
std::string StackUsageOutput
Name of the stack usage file (i.e., .su file) if user passes -fstack-usage.
std::vector< std::string > SanitizeCoverageAllowlistFiles
Path to allowlist file specifying which objects (files, functions) should exclusively be instrumented...
std::vector< std::string > SanitizeCoverageIgnorelistFiles
Path to ignorelist file specifying which objects (files, functions) listed for instrumentation by san...
bool hasSanitizeCoverage() const
std::string MainFileName
The user provided name for the "main file", if non-empty.
bool hasProfileIRInstr() const
Check if IR level profile instrumentation is on.
bool hasProfileCSIRUse() const
Check if CSIR profile use is on.
SanitizerSet SanitizeTrap
Set of sanitizer checks that trap rather than diagnose.
std::vector< std::string > SanitizeMetadataIgnorelistFiles
Path to ignorelist file specifying which objects (files, functions) listed for instrumentation by san...
SanitizerSet SanitizeRecover
Set of sanitizer checks that are non-fatal (i.e.
std::string ProfileExcludeFiles
Regexes separated by a semi-colon to filter the files to not instrument.
std::string AsSecureLogFile
The name of a file to use with .secure_log_unique directives.
std::string ProfileRemappingFile
Name of the profile remapping file to apply to the profile data supplied by -fprofile-sample-use or -...
bool hasSanitizeBinaryMetadata() const
std::string ThinLTOIndexFile
Name of the function summary index file to use for ThinLTO function importing.
const char * Argv0
Executable and command-line used to create a given CompilerInvocation.
SanitizerMaskCutoffs SanitizeSkipHotCutoffs
Set of thresholds in a range [0.0, 1.0]: the top hottest code responsible for the given fraction of P...
std::string SplitDwarfFile
The name for the split debug info file used for the DW_AT_[GNU_]dwo_name attribute in the skeleton CU...
std::vector< uint8_t > CmdArgs
List of backend command-line options for -fembed-bitcode.
std::vector< std::string > CommandLineArgs
std::string MemoryProfileUsePath
Name of the profile file to use as input for -fmemory-profile-use.
std::vector< std::string > OffloadObjects
List of filenames passed in using the -fembed-offload-object option.
std::string ProfileFilterFiles
Regexes separated by a semi-colon to filter the files to instrument.
std::string ObjectFilenameForDebug
Output filename used in the COFF debug information.
std::string SplitDwarfOutput
Output filename for the split debug info, not used in the skeleton CU.
std::string DIBugsReportFilePath
The file to use for dumping bug report by Debugify for original debug info.
CompilerInstance - Helper class for managing a single instance of the Clang compiler.
DiagnosticsEngine & getDiagnostics() const
Get the current diagnostics engine.
llvm::TimerGroup & getTimerGroup() const
llvm::Timer & getFrontendTimer() const
TargetOptions & getTargetOpts()
HeaderSearchOptions & getHeaderSearchOpts()
LangOptions & getLangOpts()
CodeGenOptions & getCodeGenOpts()
Concrete class used by the front-end to report problems and issues.
Definition: Diagnostic.h:231
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
Definition: Diagnostic.h:1493
unsigned getCustomDiagID(Level L, const char(&FormatString)[N])
Return an ID for a diagnostic with the specified format string and level.
Definition: Diagnostic.h:896
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:499
bool hasWasmExceptions() const
Definition: LangOptions.h:767
bool hasSjLjExceptions() const
Definition: LangOptions.h:755
SanitizerSet Sanitize
Set of enabled sanitizers.
Definition: LangOptions.h:505
bool hasDWARFExceptions() const
Definition: LangOptions.h:763
bool hasSEHExceptions() const
Definition: LangOptions.h:759
std::vector< std::string > NoSanitizeFiles
Paths to files specifying which objects (files, functions, variables) should not be instrumented.
Definition: LangOptions.h:511
Options for controlling the target.
Definition: TargetOptions.h:26
std::vector< std::string > Features
The list of target specific features to enable or disable – this should be a list of strings starting...
Definition: TargetOptions.h:58
std::string ABI
If given, the name of the target ABI to use.
Definition: TargetOptions.h:45
std::string CPU
If given, the name of the target CPU to generate code for.
Definition: TargetOptions.h:36
llvm::EABI EABIVersion
The EABI version to use.
Definition: TargetOptions.h:48
Create and return a pass that links in Moduels from a provided BackendConsumer to a given primary Mod...
@ VFS
Remove unused -ivfsoverlay arguments.
The JSON file list parser is used to communicate input to InstallAPI.
if(T->getSizeExpr()) TRY_TO(TraverseStmt(const_cast< Expr * >(T -> getSizeExpr())))
void EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts, DiagnosticsEngine &Diags)
llvm::cl::opt< bool > ClSanitizeGuardChecks
void emitBackendOutput(CompilerInstance &CI, CodeGenOptions &CGOpts, StringRef TDesc, llvm::Module *M, BackendAction Action, llvm::IntrusiveRefCntPtr< llvm::vfs::FileSystem > VFS, std::unique_ptr< raw_pwrite_stream > OS, BackendConsumer *BC=nullptr)
void EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts, llvm::MemoryBufferRef Buf)
BackendAction
Definition: BackendUtil.h:33
@ Backend_EmitAssembly
Emit native assembly files.
Definition: BackendUtil.h:34
@ Backend_EmitLL
Emit human-readable LLVM assembly.
Definition: BackendUtil.h:36
@ Backend_EmitBC
Emit LLVM bitcode files.
Definition: BackendUtil.h:35
@ Backend_EmitObj
Emit native object files.
Definition: BackendUtil.h:39
@ Backend_EmitMCNull
Run CodeGen, but don't emit anything.
Definition: BackendUtil.h:38
@ Backend_EmitNothing
Don't emit anything (benchmarking mode)
Definition: BackendUtil.h:37
const FunctionProtoType * T
unsigned int uint32_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
cl::opt< bool > PrintPipelinePasses
cl::opt< InstrProfCorrelator::ProfCorrelatorKind > ProfileCorrelate
static cl::opt< PGOOptions::ColdFuncOpt > ClPGOColdFuncAttr("pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden, cl::desc("Function attribute to apply to cold functions as determined by PGO"), cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default", "Default (no attribute)"), clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize", "Mark cold functions with optsize."), clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize", "Mark cold functions with minsize."), clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone", "Mark cold functions with optnone.")))
static cl::opt< bool > ClSanitizeOnOptimizerEarlyEP("sanitizer-early-opt-ep", cl::Optional, cl::desc("Insert sanitizers on OptimizerEarlyEP."))
bool has(SanitizerMask K) const
Check if a certain (single) sanitizer is enabled.
Definition: Sanitizers.h:169