21#include "llvm/ADT/DenseMap.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/Intrinsics.h"
26using namespace CodeGen;
43 : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
50 ValueTy = ATy->getValueType();
57 TypeInfo ValueTI =
C.getTypeInfo(ValueTy);
58 ValueSizeInBits = ValueTI.
Width;
59 ValueAlignInBits = ValueTI.
Align;
61 TypeInfo AtomicTI =
C.getTypeInfo(AtomicTy);
62 AtomicSizeInBits = AtomicTI.
Width;
63 AtomicAlignInBits = AtomicTI.
Align;
65 assert(ValueSizeInBits <= AtomicSizeInBits);
66 assert(ValueAlignInBits <= AtomicAlignInBits);
68 AtomicAlign =
C.toCharUnitsFromBits(AtomicAlignInBits);
69 ValueAlign =
C.toCharUnitsFromBits(ValueAlignInBits);
76 ValueSizeInBits =
C.getTypeSize(ValueTy);
78 auto Offset = OrigBFI.Offset %
C.toBits(lvalue.
getAlignment());
79 AtomicSizeInBits =
C.toBits(
80 C.toCharUnitsFromBits(Offset + OrigBFI.Size +
C.getCharWidth() - 1)
84 (
C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.
getAlignment()) *
86 llvm::Value *StoragePtr = CGF.
Builder.CreateConstGEP1_64(
87 CGF.
Int8Ty, BitFieldPtr, OffsetInChars.getQuantity());
89 StoragePtr, CGF.
UnqualPtrTy,
"atomic_bitfield_base");
94 llvm::Type *StorageTy = CGF.
Builder.getIntNTy(AtomicSizeInBits);
95 LVal = LValue::MakeBitfield(
98 AtomicTy =
C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
102 C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
103 AtomicTy =
C.getConstantArrayType(
C.CharTy, Size,
nullptr,
104 ArraySizeModifier::Normal,
110 ValueSizeInBits =
C.getTypeSize(ValueTy);
112 AtomicSizeInBits =
C.getTypeSize(AtomicTy);
118 ValueSizeInBits =
C.getTypeSize(ValueTy);
120 lvalue.
getType(), cast<llvm::FixedVectorType>(
123 AtomicSizeInBits =
C.getTypeSize(AtomicTy);
127 UseLibcall = !
C.getTargetInfo().hasBuiltinAtomic(
131 QualType getAtomicType()
const {
return AtomicTy; }
132 QualType getValueType()
const {
return ValueTy; }
133 CharUnits getAtomicAlignment()
const {
return AtomicAlign; }
134 uint64_t getAtomicSizeInBits()
const {
return AtomicSizeInBits; }
135 uint64_t getValueSizeInBits()
const {
return ValueSizeInBits; }
137 bool shouldUseLibcall()
const {
return UseLibcall; }
138 const LValue &getAtomicLValue()
const {
return LVal; }
139 llvm::Value *getAtomicPointer()
const {
149 Address getAtomicAddress()
const {
159 return Address(getAtomicPointer(), ElTy, getAtomicAlignment());
162 Address getAtomicAddressAsAtomicIntPointer()
const {
163 return castToAtomicIntPointer(getAtomicAddress());
172 bool hasPadding()
const {
173 return (ValueSizeInBits != AtomicSizeInBits);
176 bool emitMemSetZeroIfNecessary()
const;
178 llvm::Value *getAtomicSizeValue()
const {
196 llvm::Value *getScalarRValValueOrNull(
RValue RVal)
const;
199 llvm::Value *convertRValueToInt(
RValue RVal,
bool CmpXchg =
false)
const;
203 bool CmpXchg =
false)
const;
206 void emitCopyIntoMemory(
RValue rvalue)
const;
209 LValue projectValue()
const {
211 Address addr = getAtomicAddress();
215 return LValue::MakeAddr(addr, getValueType(), CGF.
getContext(),
222 bool AsValue, llvm::AtomicOrdering AO,
233 std::pair<RValue, llvm::Value *>
236 llvm::AtomicOrdering::SequentiallyConsistent,
237 llvm::AtomicOrdering Failure =
238 llvm::AtomicOrdering::SequentiallyConsistent,
239 bool IsWeak =
false);
244 void EmitAtomicUpdate(llvm::AtomicOrdering AO,
249 void EmitAtomicUpdate(llvm::AtomicOrdering AO,
RValue UpdateRVal,
256 Address CreateTempAlloca()
const;
258 bool requiresMemSetZero(llvm::Type *
type)
const;
262 void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
263 llvm::AtomicOrdering AO,
bool IsVolatile);
265 llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO,
bool IsVolatile,
266 bool CmpXchg =
false);
268 llvm::Value *EmitAtomicCompareExchangeLibcall(
269 llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
271 llvm::AtomicOrdering::SequentiallyConsistent,
272 llvm::AtomicOrdering Failure =
273 llvm::AtomicOrdering::SequentiallyConsistent);
275 std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
276 llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
278 llvm::AtomicOrdering::SequentiallyConsistent,
279 llvm::AtomicOrdering Failure =
280 llvm::AtomicOrdering::SequentiallyConsistent,
281 bool IsWeak =
false);
284 EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
288 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
292 void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
RValue UpdateRVal,
295 void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
RValue UpdateRal,
300Address AtomicInfo::CreateTempAlloca()
const {
302 (LVal.
isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
304 getAtomicAlignment(),
309 TempAlloca, getAtomicAddress().getType(),
310 getAtomicAddress().getElementType());
322 fnAttrB.addAttribute(llvm::Attribute::NoUnwind);
323 fnAttrB.addAttribute(llvm::Attribute::WillReturn);
324 llvm::AttributeList fnAttrs = llvm::AttributeList::get(
325 CGF.
getLLVMContext(), llvm::AttributeList::FunctionIndex, fnAttrB);
327 llvm::FunctionCallee fn =
335 uint64_t expectedSize) {
342bool AtomicInfo::requiresMemSetZero(llvm::Type *
type)
const {
344 if (hasPadding())
return true;
347 switch (getEvaluationKind()) {
354 AtomicSizeInBits / 2);
360 llvm_unreachable(
"bad evaluation kind");
363bool AtomicInfo::emitMemSetZeroIfNecessary()
const {
380 llvm::AtomicOrdering SuccessOrder,
381 llvm::AtomicOrdering FailureOrder,
382 llvm::SyncScope::ID
Scope) {
389 Pair->setVolatile(
E->isVolatile());
390 Pair->setWeak(IsWeak);
395 llvm::Value *Old = CGF.
Builder.CreateExtractValue(Pair, 0);
396 llvm::Value *Cmp = CGF.
Builder.CreateExtractValue(Pair, 1);
400 llvm::BasicBlock *StoreExpectedBB =
405 llvm::BasicBlock *ContinueBB =
410 CGF.
Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
412 CGF.
Builder.SetInsertPoint(StoreExpectedBB);
416 CGF.
Builder.CreateBr(ContinueBB);
418 CGF.
Builder.SetInsertPoint(ContinueBB);
429 llvm::Value *FailureOrderVal,
431 llvm::AtomicOrdering SuccessOrder,
432 llvm::SyncScope::ID
Scope) {
433 llvm::AtomicOrdering FailureOrder;
434 if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
435 auto FOS = FO->getSExtValue();
436 if (!llvm::isValidAtomicOrderingCABI(FOS))
437 FailureOrder = llvm::AtomicOrdering::Monotonic;
439 switch ((llvm::AtomicOrderingCABI)FOS) {
440 case llvm::AtomicOrderingCABI::relaxed:
443 case llvm::AtomicOrderingCABI::release:
444 case llvm::AtomicOrderingCABI::acq_rel:
445 FailureOrder = llvm::AtomicOrdering::Monotonic;
447 case llvm::AtomicOrderingCABI::consume:
448 case llvm::AtomicOrderingCABI::acquire:
449 FailureOrder = llvm::AtomicOrdering::Acquire;
451 case llvm::AtomicOrderingCABI::seq_cst:
452 FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent;
460 FailureOrder,
Scope);
473 llvm::SwitchInst *SI = CGF.
Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
475 SI->addCase(CGF.
Builder.getInt32((
int)llvm::AtomicOrderingCABI::consume),
477 SI->addCase(CGF.
Builder.getInt32((
int)llvm::AtomicOrderingCABI::acquire),
479 SI->addCase(CGF.
Builder.getInt32((
int)llvm::AtomicOrderingCABI::seq_cst),
483 CGF.
Builder.SetInsertPoint(MonotonicBB);
485 Size, SuccessOrder, llvm::AtomicOrdering::Monotonic,
Scope);
488 CGF.
Builder.SetInsertPoint(AcquireBB);
490 llvm::AtomicOrdering::Acquire,
Scope);
493 CGF.
Builder.SetInsertPoint(SeqCstBB);
495 llvm::AtomicOrdering::SequentiallyConsistent,
Scope);
498 CGF.
Builder.SetInsertPoint(ContBB);
508 llvm::CmpInst::Predicate Pred;
511 llvm_unreachable(
"Unexpected min/max operation");
512 case AtomicExpr::AO__atomic_max_fetch:
513 case AtomicExpr::AO__scoped_atomic_max_fetch:
514 Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT;
516 case AtomicExpr::AO__atomic_min_fetch:
517 case AtomicExpr::AO__scoped_atomic_min_fetch:
518 Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT;
521 llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS,
"tst");
522 return Builder.CreateSelect(Cmp, OldVal, RHS,
"newval");
527 llvm::Value *IsWeak, llvm::Value *FailureOrder,
528 uint64_t Size, llvm::AtomicOrdering Order,
529 llvm::SyncScope::ID
Scope) {
530 llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
531 bool PostOpMinMax =
false;
534 switch (
E->getOp()) {
535 case AtomicExpr::AO__c11_atomic_init:
536 case AtomicExpr::AO__opencl_atomic_init:
537 llvm_unreachable(
"Already handled!");
539 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
540 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
541 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
543 FailureOrder, Size, Order,
Scope);
545 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
546 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
547 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
549 FailureOrder, Size, Order,
Scope);
551 case AtomicExpr::AO__atomic_compare_exchange:
552 case AtomicExpr::AO__atomic_compare_exchange_n:
553 case AtomicExpr::AO__scoped_atomic_compare_exchange:
554 case AtomicExpr::AO__scoped_atomic_compare_exchange_n: {
555 if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
557 Val1, Val2, FailureOrder, Size, Order,
Scope);
560 llvm::BasicBlock *StrongBB =
563 llvm::BasicBlock *ContBB =
566 llvm::SwitchInst *SI = CGF.
Builder.CreateSwitch(IsWeak, WeakBB);
567 SI->addCase(CGF.
Builder.getInt1(
false), StrongBB);
569 CGF.
Builder.SetInsertPoint(StrongBB);
571 FailureOrder, Size, Order,
Scope);
574 CGF.
Builder.SetInsertPoint(WeakBB);
576 FailureOrder, Size, Order,
Scope);
579 CGF.
Builder.SetInsertPoint(ContBB);
583 case AtomicExpr::AO__c11_atomic_load:
584 case AtomicExpr::AO__opencl_atomic_load:
585 case AtomicExpr::AO__hip_atomic_load:
586 case AtomicExpr::AO__atomic_load_n:
587 case AtomicExpr::AO__atomic_load:
588 case AtomicExpr::AO__scoped_atomic_load_n:
589 case AtomicExpr::AO__scoped_atomic_load: {
591 Load->setAtomic(Order,
Scope);
592 Load->setVolatile(
E->isVolatile());
597 case AtomicExpr::AO__c11_atomic_store:
598 case AtomicExpr::AO__opencl_atomic_store:
599 case AtomicExpr::AO__hip_atomic_store:
600 case AtomicExpr::AO__atomic_store:
601 case AtomicExpr::AO__atomic_store_n:
602 case AtomicExpr::AO__scoped_atomic_store:
603 case AtomicExpr::AO__scoped_atomic_store_n: {
606 Store->setAtomic(Order,
Scope);
607 Store->setVolatile(
E->isVolatile());
611 case AtomicExpr::AO__c11_atomic_exchange:
612 case AtomicExpr::AO__hip_atomic_exchange:
613 case AtomicExpr::AO__opencl_atomic_exchange:
614 case AtomicExpr::AO__atomic_exchange_n:
615 case AtomicExpr::AO__atomic_exchange:
616 case AtomicExpr::AO__scoped_atomic_exchange_n:
617 case AtomicExpr::AO__scoped_atomic_exchange:
618 Op = llvm::AtomicRMWInst::Xchg;
621 case AtomicExpr::AO__atomic_add_fetch:
622 case AtomicExpr::AO__scoped_atomic_add_fetch:
623 PostOp =
E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd
624 : llvm::Instruction::Add;
626 case AtomicExpr::AO__c11_atomic_fetch_add:
627 case AtomicExpr::AO__hip_atomic_fetch_add:
628 case AtomicExpr::AO__opencl_atomic_fetch_add:
629 case AtomicExpr::AO__atomic_fetch_add:
630 case AtomicExpr::AO__scoped_atomic_fetch_add:
631 Op =
E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd
632 : llvm::AtomicRMWInst::Add;
635 case AtomicExpr::AO__atomic_sub_fetch:
636 case AtomicExpr::AO__scoped_atomic_sub_fetch:
637 PostOp =
E->getValueType()->isFloatingType() ? llvm::Instruction::FSub
638 : llvm::Instruction::Sub;
640 case AtomicExpr::AO__c11_atomic_fetch_sub:
641 case AtomicExpr::AO__hip_atomic_fetch_sub:
642 case AtomicExpr::AO__opencl_atomic_fetch_sub:
643 case AtomicExpr::AO__atomic_fetch_sub:
644 case AtomicExpr::AO__scoped_atomic_fetch_sub:
645 Op =
E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub
646 : llvm::AtomicRMWInst::Sub;
649 case AtomicExpr::AO__atomic_min_fetch:
650 case AtomicExpr::AO__scoped_atomic_min_fetch:
653 case AtomicExpr::AO__c11_atomic_fetch_min:
654 case AtomicExpr::AO__hip_atomic_fetch_min:
655 case AtomicExpr::AO__opencl_atomic_fetch_min:
656 case AtomicExpr::AO__atomic_fetch_min:
657 case AtomicExpr::AO__scoped_atomic_fetch_min:
658 Op =
E->getValueType()->isFloatingType()
659 ? llvm::AtomicRMWInst::FMin
660 : (
E->getValueType()->isSignedIntegerType()
661 ? llvm::AtomicRMWInst::Min
662 : llvm::AtomicRMWInst::UMin);
665 case AtomicExpr::AO__atomic_max_fetch:
666 case AtomicExpr::AO__scoped_atomic_max_fetch:
669 case AtomicExpr::AO__c11_atomic_fetch_max:
670 case AtomicExpr::AO__hip_atomic_fetch_max:
671 case AtomicExpr::AO__opencl_atomic_fetch_max:
672 case AtomicExpr::AO__atomic_fetch_max:
673 case AtomicExpr::AO__scoped_atomic_fetch_max:
674 Op =
E->getValueType()->isFloatingType()
675 ? llvm::AtomicRMWInst::FMax
676 : (
E->getValueType()->isSignedIntegerType()
677 ? llvm::AtomicRMWInst::Max
678 : llvm::AtomicRMWInst::UMax);
681 case AtomicExpr::AO__atomic_and_fetch:
682 case AtomicExpr::AO__scoped_atomic_and_fetch:
683 PostOp = llvm::Instruction::And;
685 case AtomicExpr::AO__c11_atomic_fetch_and:
686 case AtomicExpr::AO__hip_atomic_fetch_and:
687 case AtomicExpr::AO__opencl_atomic_fetch_and:
688 case AtomicExpr::AO__atomic_fetch_and:
689 case AtomicExpr::AO__scoped_atomic_fetch_and:
690 Op = llvm::AtomicRMWInst::And;
693 case AtomicExpr::AO__atomic_or_fetch:
694 case AtomicExpr::AO__scoped_atomic_or_fetch:
695 PostOp = llvm::Instruction::Or;
697 case AtomicExpr::AO__c11_atomic_fetch_or:
698 case AtomicExpr::AO__hip_atomic_fetch_or:
699 case AtomicExpr::AO__opencl_atomic_fetch_or:
700 case AtomicExpr::AO__atomic_fetch_or:
701 case AtomicExpr::AO__scoped_atomic_fetch_or:
702 Op = llvm::AtomicRMWInst::Or;
705 case AtomicExpr::AO__atomic_xor_fetch:
706 case AtomicExpr::AO__scoped_atomic_xor_fetch:
707 PostOp = llvm::Instruction::Xor;
709 case AtomicExpr::AO__c11_atomic_fetch_xor:
710 case AtomicExpr::AO__hip_atomic_fetch_xor:
711 case AtomicExpr::AO__opencl_atomic_fetch_xor:
712 case AtomicExpr::AO__atomic_fetch_xor:
713 case AtomicExpr::AO__scoped_atomic_fetch_xor:
714 Op = llvm::AtomicRMWInst::Xor;
717 case AtomicExpr::AO__atomic_nand_fetch:
718 case AtomicExpr::AO__scoped_atomic_nand_fetch:
719 PostOp = llvm::Instruction::And;
721 case AtomicExpr::AO__c11_atomic_fetch_nand:
722 case AtomicExpr::AO__atomic_fetch_nand:
723 case AtomicExpr::AO__scoped_atomic_fetch_nand:
724 Op = llvm::AtomicRMWInst::Nand;
727 case AtomicExpr::AO__atomic_test_and_set: {
728 llvm::AtomicRMWInst *RMWI =
731 RMWI->setVolatile(
E->isVolatile());
732 llvm::Value *Result = CGF.
Builder.CreateIsNotNull(RMWI,
"tobool");
737 case AtomicExpr::AO__atomic_clear: {
738 llvm::StoreInst *Store =
740 Store->setAtomic(Order,
Scope);
741 Store->setVolatile(
E->isVolatile());
747 llvm::AtomicRMWInst *RMWI =
749 RMWI->setVolatile(
E->isVolatile());
753 llvm::Value *Result = RMWI;
756 E->getValueType()->isSignedIntegerType(),
759 Result = CGF.
Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI,
761 if (
E->getOp() == AtomicExpr::AO__atomic_nand_fetch ||
762 E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch)
763 Result = CGF.
Builder.CreateNot(Result);
779 llvm::Value *IsWeak, llvm::Value *FailureOrder,
780 uint64_t Size, llvm::AtomicOrdering Order,
781 llvm::Value *
Scope) {
782 auto ScopeModel =
Expr->getScopeModel();
787 llvm::SyncScope::ID SS;
794 SyncScope::OpenCLDevice,
797 SS = llvm::SyncScope::System;
804 if (
auto SC = dyn_cast<llvm::ConstantInt>(
Scope)) {
815 auto Scopes = ScopeModel->getRuntimeValues();
816 llvm::DenseMap<unsigned, llvm::BasicBlock *> BB;
817 for (
auto S : Scopes)
820 llvm::BasicBlock *ContBB =
823 auto *SC = Builder.CreateIntCast(
Scope, Builder.getInt32Ty(),
false);
826 auto FallBack = ScopeModel->getFallBackValue();
827 llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]);
828 for (
auto S : Scopes) {
831 SI->addCase(Builder.getInt32(S), B);
833 Builder.SetInsertPoint(B);
840 Builder.CreateBr(ContBB);
843 Builder.SetInsertPoint(ContBB);
850 MemTy = AT->getValueType();
851 llvm::Value *IsWeak =
nullptr, *OrderFail =
nullptr;
858 if (
E->getOp() == AtomicExpr::AO__c11_atomic_init ||
859 E->getOp() == AtomicExpr::AO__opencl_atomic_init) {
872 bool Misaligned = (Ptr.
getAlignment() % TInfo.Width) != 0;
876 << (
int)TInfo.Width.getQuantity()
881 << (
int)TInfo.Width.getQuantity() << (
int)MaxInlineWidth.
getQuantity();
887 bool ShouldCastToIntPtrTy =
true;
889 switch (
E->getOp()) {
890 case AtomicExpr::AO__c11_atomic_init:
891 case AtomicExpr::AO__opencl_atomic_init:
892 llvm_unreachable(
"Already handled above with EmitAtomicInit!");
894 case AtomicExpr::AO__atomic_load_n:
895 case AtomicExpr::AO__scoped_atomic_load_n:
896 case AtomicExpr::AO__c11_atomic_load:
897 case AtomicExpr::AO__opencl_atomic_load:
898 case AtomicExpr::AO__hip_atomic_load:
899 case AtomicExpr::AO__atomic_test_and_set:
900 case AtomicExpr::AO__atomic_clear:
903 case AtomicExpr::AO__atomic_load:
904 case AtomicExpr::AO__scoped_atomic_load:
908 case AtomicExpr::AO__atomic_store:
909 case AtomicExpr::AO__scoped_atomic_store:
913 case AtomicExpr::AO__atomic_exchange:
914 case AtomicExpr::AO__scoped_atomic_exchange:
919 case AtomicExpr::AO__atomic_compare_exchange:
920 case AtomicExpr::AO__atomic_compare_exchange_n:
921 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
922 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
923 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
924 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
925 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
926 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
927 case AtomicExpr::AO__scoped_atomic_compare_exchange:
928 case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
930 if (
E->getOp() == AtomicExpr::AO__atomic_compare_exchange ||
931 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange)
936 if (
E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n ||
937 E->getOp() == AtomicExpr::AO__atomic_compare_exchange ||
938 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n ||
939 E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange)
943 case AtomicExpr::AO__c11_atomic_fetch_add:
944 case AtomicExpr::AO__c11_atomic_fetch_sub:
945 case AtomicExpr::AO__hip_atomic_fetch_add:
946 case AtomicExpr::AO__hip_atomic_fetch_sub:
947 case AtomicExpr::AO__opencl_atomic_fetch_add:
948 case AtomicExpr::AO__opencl_atomic_fetch_sub:
965 case AtomicExpr::AO__atomic_fetch_add:
966 case AtomicExpr::AO__atomic_fetch_max:
967 case AtomicExpr::AO__atomic_fetch_min:
968 case AtomicExpr::AO__atomic_fetch_sub:
969 case AtomicExpr::AO__atomic_add_fetch:
970 case AtomicExpr::AO__atomic_max_fetch:
971 case AtomicExpr::AO__atomic_min_fetch:
972 case AtomicExpr::AO__atomic_sub_fetch:
973 case AtomicExpr::AO__c11_atomic_fetch_max:
974 case AtomicExpr::AO__c11_atomic_fetch_min:
975 case AtomicExpr::AO__opencl_atomic_fetch_max:
976 case AtomicExpr::AO__opencl_atomic_fetch_min:
977 case AtomicExpr::AO__hip_atomic_fetch_max:
978 case AtomicExpr::AO__hip_atomic_fetch_min:
979 case AtomicExpr::AO__scoped_atomic_fetch_add:
980 case AtomicExpr::AO__scoped_atomic_fetch_max:
981 case AtomicExpr::AO__scoped_atomic_fetch_min:
982 case AtomicExpr::AO__scoped_atomic_fetch_sub:
983 case AtomicExpr::AO__scoped_atomic_add_fetch:
984 case AtomicExpr::AO__scoped_atomic_max_fetch:
985 case AtomicExpr::AO__scoped_atomic_min_fetch:
986 case AtomicExpr::AO__scoped_atomic_sub_fetch:
990 case AtomicExpr::AO__atomic_fetch_and:
991 case AtomicExpr::AO__atomic_fetch_nand:
992 case AtomicExpr::AO__atomic_fetch_or:
993 case AtomicExpr::AO__atomic_fetch_xor:
994 case AtomicExpr::AO__atomic_and_fetch:
995 case AtomicExpr::AO__atomic_nand_fetch:
996 case AtomicExpr::AO__atomic_or_fetch:
997 case AtomicExpr::AO__atomic_xor_fetch:
998 case AtomicExpr::AO__atomic_store_n:
999 case AtomicExpr::AO__atomic_exchange_n:
1000 case AtomicExpr::AO__c11_atomic_fetch_and:
1001 case AtomicExpr::AO__c11_atomic_fetch_nand:
1002 case AtomicExpr::AO__c11_atomic_fetch_or:
1003 case AtomicExpr::AO__c11_atomic_fetch_xor:
1004 case AtomicExpr::AO__c11_atomic_store:
1005 case AtomicExpr::AO__c11_atomic_exchange:
1006 case AtomicExpr::AO__hip_atomic_fetch_and:
1007 case AtomicExpr::AO__hip_atomic_fetch_or:
1008 case AtomicExpr::AO__hip_atomic_fetch_xor:
1009 case AtomicExpr::AO__hip_atomic_store:
1010 case AtomicExpr::AO__hip_atomic_exchange:
1011 case AtomicExpr::AO__opencl_atomic_fetch_and:
1012 case AtomicExpr::AO__opencl_atomic_fetch_or:
1013 case AtomicExpr::AO__opencl_atomic_fetch_xor:
1014 case AtomicExpr::AO__opencl_atomic_store:
1015 case AtomicExpr::AO__opencl_atomic_exchange:
1016 case AtomicExpr::AO__scoped_atomic_fetch_and:
1017 case AtomicExpr::AO__scoped_atomic_fetch_nand:
1018 case AtomicExpr::AO__scoped_atomic_fetch_or:
1019 case AtomicExpr::AO__scoped_atomic_fetch_xor:
1020 case AtomicExpr::AO__scoped_atomic_and_fetch:
1021 case AtomicExpr::AO__scoped_atomic_nand_fetch:
1022 case AtomicExpr::AO__scoped_atomic_or_fetch:
1023 case AtomicExpr::AO__scoped_atomic_xor_fetch:
1024 case AtomicExpr::AO__scoped_atomic_store_n:
1025 case AtomicExpr::AO__scoped_atomic_exchange_n:
1036 AtomicInfo Atomics(*
this, AtomicVal);
1038 if (ShouldCastToIntPtrTy) {
1039 Ptr = Atomics.castToAtomicIntPointer(Ptr);
1041 Val1 = Atomics.convertToAtomicIntPointer(Val1);
1043 Val2 = Atomics.convertToAtomicIntPointer(Val2);
1046 if (ShouldCastToIntPtrTy)
1047 Dest = Atomics.castToAtomicIntPointer(Dest);
1048 }
else if (
E->isCmpXChg())
1051 Dest = Atomics.CreateTempAlloca();
1052 if (ShouldCastToIntPtrTy)
1053 Dest = Atomics.castToAtomicIntPointer(Dest);
1056 bool PowerOf2Size = (
Size & (
Size - 1)) == 0;
1057 bool UseLibcall = !PowerOf2Size || (
Size > 16);
1077 auto CastToGenericAddrSpace = [&](llvm::Value *
V,
QualType PT) {
1084 auto *DestType = llvm::PointerType::get(
getLLVMContext(), DestAS);
1095 std::string LibCallName;
1097 bool HaveRetTy =
false;
1098 switch (
E->getOp()) {
1099 case AtomicExpr::AO__c11_atomic_init:
1100 case AtomicExpr::AO__opencl_atomic_init:
1101 llvm_unreachable(
"Already handled!");
1108 case AtomicExpr::AO__atomic_compare_exchange:
1109 case AtomicExpr::AO__atomic_compare_exchange_n:
1110 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
1111 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
1112 case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
1113 case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
1114 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
1115 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
1116 case AtomicExpr::AO__scoped_atomic_compare_exchange:
1117 case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
1118 LibCallName =
"__atomic_compare_exchange";
1132 case AtomicExpr::AO__atomic_exchange:
1133 case AtomicExpr::AO__atomic_exchange_n:
1134 case AtomicExpr::AO__c11_atomic_exchange:
1135 case AtomicExpr::AO__hip_atomic_exchange:
1136 case AtomicExpr::AO__opencl_atomic_exchange:
1137 case AtomicExpr::AO__scoped_atomic_exchange:
1138 case AtomicExpr::AO__scoped_atomic_exchange_n:
1139 LibCallName =
"__atomic_exchange";
1145 case AtomicExpr::AO__atomic_store:
1146 case AtomicExpr::AO__atomic_store_n:
1147 case AtomicExpr::AO__c11_atomic_store:
1148 case AtomicExpr::AO__hip_atomic_store:
1149 case AtomicExpr::AO__opencl_atomic_store:
1150 case AtomicExpr::AO__scoped_atomic_store:
1151 case AtomicExpr::AO__scoped_atomic_store_n:
1152 LibCallName =
"__atomic_store";
1160 case AtomicExpr::AO__atomic_load:
1161 case AtomicExpr::AO__atomic_load_n:
1162 case AtomicExpr::AO__c11_atomic_load:
1163 case AtomicExpr::AO__hip_atomic_load:
1164 case AtomicExpr::AO__opencl_atomic_load:
1165 case AtomicExpr::AO__scoped_atomic_load:
1166 case AtomicExpr::AO__scoped_atomic_load_n:
1167 LibCallName =
"__atomic_load";
1169 case AtomicExpr::AO__atomic_add_fetch:
1170 case AtomicExpr::AO__scoped_atomic_add_fetch:
1171 case AtomicExpr::AO__atomic_fetch_add:
1172 case AtomicExpr::AO__c11_atomic_fetch_add:
1173 case AtomicExpr::AO__hip_atomic_fetch_add:
1174 case AtomicExpr::AO__opencl_atomic_fetch_add:
1175 case AtomicExpr::AO__scoped_atomic_fetch_add:
1176 case AtomicExpr::AO__atomic_and_fetch:
1177 case AtomicExpr::AO__scoped_atomic_and_fetch:
1178 case AtomicExpr::AO__atomic_fetch_and:
1179 case AtomicExpr::AO__c11_atomic_fetch_and:
1180 case AtomicExpr::AO__hip_atomic_fetch_and:
1181 case AtomicExpr::AO__opencl_atomic_fetch_and:
1182 case AtomicExpr::AO__scoped_atomic_fetch_and:
1183 case AtomicExpr::AO__atomic_or_fetch:
1184 case AtomicExpr::AO__scoped_atomic_or_fetch:
1185 case AtomicExpr::AO__atomic_fetch_or:
1186 case AtomicExpr::AO__c11_atomic_fetch_or:
1187 case AtomicExpr::AO__hip_atomic_fetch_or:
1188 case AtomicExpr::AO__opencl_atomic_fetch_or:
1189 case AtomicExpr::AO__scoped_atomic_fetch_or:
1190 case AtomicExpr::AO__atomic_sub_fetch:
1191 case AtomicExpr::AO__scoped_atomic_sub_fetch:
1192 case AtomicExpr::AO__atomic_fetch_sub:
1193 case AtomicExpr::AO__c11_atomic_fetch_sub:
1194 case AtomicExpr::AO__hip_atomic_fetch_sub:
1195 case AtomicExpr::AO__opencl_atomic_fetch_sub:
1196 case AtomicExpr::AO__scoped_atomic_fetch_sub:
1197 case AtomicExpr::AO__atomic_xor_fetch:
1198 case AtomicExpr::AO__scoped_atomic_xor_fetch:
1199 case AtomicExpr::AO__atomic_fetch_xor:
1200 case AtomicExpr::AO__c11_atomic_fetch_xor:
1201 case AtomicExpr::AO__hip_atomic_fetch_xor:
1202 case AtomicExpr::AO__opencl_atomic_fetch_xor:
1203 case AtomicExpr::AO__scoped_atomic_fetch_xor:
1204 case AtomicExpr::AO__atomic_nand_fetch:
1205 case AtomicExpr::AO__atomic_fetch_nand:
1206 case AtomicExpr::AO__c11_atomic_fetch_nand:
1207 case AtomicExpr::AO__scoped_atomic_fetch_nand:
1208 case AtomicExpr::AO__scoped_atomic_nand_fetch:
1209 case AtomicExpr::AO__atomic_min_fetch:
1210 case AtomicExpr::AO__atomic_fetch_min:
1211 case AtomicExpr::AO__c11_atomic_fetch_min:
1212 case AtomicExpr::AO__hip_atomic_fetch_min:
1213 case AtomicExpr::AO__opencl_atomic_fetch_min:
1214 case AtomicExpr::AO__scoped_atomic_fetch_min:
1215 case AtomicExpr::AO__scoped_atomic_min_fetch:
1216 case AtomicExpr::AO__atomic_max_fetch:
1217 case AtomicExpr::AO__atomic_fetch_max:
1218 case AtomicExpr::AO__c11_atomic_fetch_max:
1219 case AtomicExpr::AO__hip_atomic_fetch_max:
1220 case AtomicExpr::AO__opencl_atomic_fetch_max:
1221 case AtomicExpr::AO__scoped_atomic_fetch_max:
1222 case AtomicExpr::AO__scoped_atomic_max_fetch:
1223 case AtomicExpr::AO__atomic_test_and_set:
1224 case AtomicExpr::AO__atomic_clear:
1225 llvm_unreachable(
"Integral atomic operations always become atomicrmw!");
1228 if (
E->isOpenCL()) {
1230 std::string(
"__opencl") + StringRef(LibCallName).drop_front(1).str();
1258 bool IsStore =
E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1259 E->getOp() == AtomicExpr::AO__opencl_atomic_store ||
1260 E->getOp() == AtomicExpr::AO__hip_atomic_store ||
1261 E->getOp() == AtomicExpr::AO__atomic_store ||
1262 E->getOp() == AtomicExpr::AO__atomic_store_n ||
1263 E->getOp() == AtomicExpr::AO__scoped_atomic_store ||
1264 E->getOp() == AtomicExpr::AO__scoped_atomic_store_n ||
1265 E->getOp() == AtomicExpr::AO__atomic_clear;
1266 bool IsLoad =
E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1267 E->getOp() == AtomicExpr::AO__opencl_atomic_load ||
1268 E->getOp() == AtomicExpr::AO__hip_atomic_load ||
1269 E->getOp() == AtomicExpr::AO__atomic_load ||
1270 E->getOp() == AtomicExpr::AO__atomic_load_n ||
1271 E->getOp() == AtomicExpr::AO__scoped_atomic_load ||
1272 E->getOp() == AtomicExpr::AO__scoped_atomic_load_n;
1274 if (isa<llvm::ConstantInt>(Order)) {
1275 auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1278 if (llvm::isValidAtomicOrderingCABI(ord))
1279 switch ((llvm::AtomicOrderingCABI)ord) {
1280 case llvm::AtomicOrderingCABI::relaxed:
1281 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1282 llvm::AtomicOrdering::Monotonic,
Scope);
1284 case llvm::AtomicOrderingCABI::consume:
1285 case llvm::AtomicOrderingCABI::acquire:
1288 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1289 llvm::AtomicOrdering::Acquire,
Scope);
1291 case llvm::AtomicOrderingCABI::release:
1294 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1295 llvm::AtomicOrdering::Release,
Scope);
1297 case llvm::AtomicOrderingCABI::acq_rel:
1298 if (IsLoad || IsStore)
1300 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1301 llvm::AtomicOrdering::AcquireRelease,
Scope);
1303 case llvm::AtomicOrderingCABI::seq_cst:
1304 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1305 llvm::AtomicOrdering::SequentiallyConsistent,
Scope);
1318 llvm::BasicBlock *MonotonicBB =
nullptr, *AcquireBB =
nullptr,
1319 *ReleaseBB =
nullptr, *AcqRelBB =
nullptr,
1320 *SeqCstBB =
nullptr;
1326 if (!IsLoad && !IsStore)
1335 Order =
Builder.CreateIntCast(Order,
Builder.getInt32Ty(),
false);
1336 llvm::SwitchInst *SI =
Builder.CreateSwitch(Order, MonotonicBB);
1339 Builder.SetInsertPoint(MonotonicBB);
1340 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1341 llvm::AtomicOrdering::Monotonic,
Scope);
1344 Builder.SetInsertPoint(AcquireBB);
1345 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1346 llvm::AtomicOrdering::Acquire,
Scope);
1348 SI->addCase(
Builder.getInt32((
int)llvm::AtomicOrderingCABI::consume),
1350 SI->addCase(
Builder.getInt32((
int)llvm::AtomicOrderingCABI::acquire),
1354 Builder.SetInsertPoint(ReleaseBB);
1355 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1356 llvm::AtomicOrdering::Release,
Scope);
1358 SI->addCase(
Builder.getInt32((
int)llvm::AtomicOrderingCABI::release),
1361 if (!IsLoad && !IsStore) {
1362 Builder.SetInsertPoint(AcqRelBB);
1363 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1364 llvm::AtomicOrdering::AcquireRelease,
Scope);
1366 SI->addCase(
Builder.getInt32((
int)llvm::AtomicOrderingCABI::acq_rel),
1369 Builder.SetInsertPoint(SeqCstBB);
1370 EmitAtomicOp(*
this,
E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size,
1371 llvm::AtomicOrdering::SequentiallyConsistent,
Scope);
1373 SI->addCase(
Builder.getInt32((
int)llvm::AtomicOrderingCABI::seq_cst),
1377 Builder.SetInsertPoint(ContBB);
1381 assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits());
1387 llvm::IntegerType *ty =
1392Address AtomicInfo::convertToAtomicIntPointer(
Address Addr)
const {
1395 if (SourceSizeInBits != AtomicSizeInBits) {
1396 Address Tmp = CreateTempAlloca();
1398 std::min(AtomicSizeInBits, SourceSizeInBits) / 8);
1402 return castToAtomicIntPointer(Addr);
1408 bool asValue)
const {
1444 if (ValTy->isFloatingPointTy())
1445 return ValTy->isX86_FP80Ty() || CmpXchg;
1446 return !ValTy->isIntegerTy() && !ValTy->isPointerTy();
1449RValue AtomicInfo::ConvertToValueOrAtomic(llvm::Value *Val,
1452 bool CmpXchg)
const {
1454 assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy() ||
1455 Val->getType()->isIEEELikeFPTy()) &&
1456 "Expected integer, pointer or floating point value when converting "
1463 auto *ValTy = AsValue
1465 : getAtomicAddress().getElementType();
1467 assert((!ValTy->isIntegerTy() || Val->getType() == ValTy) &&
1468 "Different integer types.");
1471 if (llvm::CastInst::isBitCastable(Val->getType(), ValTy))
1478 bool TempIsVolatile =
false;
1484 Temp = CreateTempAlloca();
1488 Address CastTemp = castToAtomicIntPointer(Temp);
1491 return convertAtomicTempToRValue(Temp, ResultSlot,
Loc, AsValue);
1494void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1495 llvm::AtomicOrdering AO,
bool) {
1507llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1508 bool IsVolatile,
bool CmpXchg) {
1510 Address Addr = getAtomicAddress();
1512 Addr = castToAtomicIntPointer(Addr);
1514 Load->setAtomic(AO);
1518 Load->setVolatile(
true);
1528 AtomicInfo AI(*
this, LV);
1531 bool AtomicIsInline = !AI.shouldUseLibcall();
1536 return IsVolatile && AtomicIsInline;
1541 llvm::AtomicOrdering AO;
1544 AO = llvm::AtomicOrdering::SequentiallyConsistent;
1546 AO = llvm::AtomicOrdering::Acquire;
1553 bool AsValue, llvm::AtomicOrdering AO,
1556 if (shouldUseLibcall()) {
1562 TempAddr = CreateTempAlloca();
1564 EmitAtomicLoadLibcall(TempAddr.
emitRawPointer(CGF), AO, IsVolatile);
1568 return convertAtomicTempToRValue(TempAddr, ResultSlot,
Loc, AsValue);
1572 auto *
Load = EmitAtomicLoadOp(AO, IsVolatile);
1580 return ConvertToValueOrAtomic(Load, ResultSlot,
Loc, AsValue);
1586 llvm::AtomicOrdering AO,
bool IsVolatile,
1588 AtomicInfo Atomics(*
this, src);
1589 return Atomics.EmitAtomicLoad(resultSlot, loc,
true, AO,
1595void AtomicInfo::emitCopyIntoMemory(
RValue rvalue)
const {
1614 emitMemSetZeroIfNecessary();
1617 LValue TempLVal = projectValue();
1638 AtomicInfo Atomics(CGF, TempLV);
1639 Atomics.emitCopyIntoMemory(rvalue);
1643llvm::Value *AtomicInfo::getScalarRValValueOrNull(
RValue RVal)
const {
1649llvm::Value *AtomicInfo::convertRValueToInt(
RValue RVal,
bool CmpXchg)
const {
1652 if (llvm::Value *
Value = getScalarRValValueOrNull(RVal)) {
1656 llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1658 LVal.
isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1659 if (llvm::BitCastInst::isBitCastable(
Value->
getType(), InputIntTy))
1665 Address Addr = materializeRValue(RVal);
1668 Addr = castToAtomicIntPointer(Addr);
1672std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1673 llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1674 llvm::AtomicOrdering
Success, llvm::AtomicOrdering Failure,
bool IsWeak) {
1676 Address Addr = getAtomicAddressAsAtomicIntPointer();
1681 Inst->setWeak(IsWeak);
1684 auto *PreviousVal = CGF.
Builder.CreateExtractValue(Inst, 0);
1685 auto *SuccessFailureVal = CGF.
Builder.CreateExtractValue(Inst, 1);
1686 return std::make_pair(PreviousVal, SuccessFailureVal);
1690AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1691 llvm::Value *DesiredAddr,
1693 llvm::AtomicOrdering Failure) {
1702 llvm::ConstantInt::get(CGF.
IntTy, (
int)llvm::toCABI(
Success))),
1705 llvm::ConstantInt::get(CGF.
IntTy, (
int)llvm::toCABI(Failure))),
1710 return SuccessFailureRVal.getScalarVal();
1713std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1715 llvm::AtomicOrdering Failure,
bool IsWeak) {
1717 if (shouldUseLibcall()) {
1721 llvm::Value *DesiredPtr = materializeRValue(Desired).emitRawPointer(CGF);
1722 auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr,
1724 return std::make_pair(
1732 auto *ExpectedVal = convertRValueToInt(
Expected,
true);
1733 auto *DesiredVal = convertRValueToInt(Desired,
true);
1734 auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal,
Success,
1736 return std::make_pair(
1748 LValue AtomicLVal = Atomics.getAtomicLValue();
1755 Address Ptr = Atomics.materializeRValue(OldRVal);
1788 RValue NewRVal = UpdateOp(UpRVal);
1798void AtomicInfo::EmitAtomicUpdateLibcall(
1799 llvm::AtomicOrdering AO,
const llvm::function_ref<
RValue(
RValue)> &UpdateOp,
1801 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1803 Address ExpectedAddr = CreateTempAlloca();
1805 EmitAtomicLoadLibcall(ExpectedAddr.
emitRawPointer(CGF), AO, IsVolatile);
1809 Address DesiredAddr = CreateTempAlloca();
1811 requiresMemSetZero(getAtomicAddress().getElementType())) {
1815 auto OldRVal = convertAtomicTempToRValue(ExpectedAddr,
1822 EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr, AO, Failure);
1823 CGF.
Builder.CreateCondBr(Res, ExitBB, ContBB);
1827void AtomicInfo::EmitAtomicUpdateOp(
1828 llvm::AtomicOrdering AO,
const llvm::function_ref<
RValue(
RValue)> &UpdateOp,
1830 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1833 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile,
true);
1837 auto *CurBB = CGF.
Builder.GetInsertBlock();
1839 llvm::PHINode *PHI = CGF.
Builder.CreatePHI(OldVal->getType(),
1841 PHI->addIncoming(OldVal, CurBB);
1842 Address NewAtomicAddr = CreateTempAlloca();
1845 ? castToAtomicIntPointer(NewAtomicAddr)
1849 requiresMemSetZero(getAtomicAddress().getElementType())) {
1858 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1859 PHI->addIncoming(Res.
first, CGF.
Builder.GetInsertBlock());
1866 LValue AtomicLVal = Atomics.getAtomicLValue();
1890void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1891 RValue UpdateRVal,
bool IsVolatile) {
1892 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1894 Address ExpectedAddr = CreateTempAlloca();
1896 EmitAtomicLoadLibcall(ExpectedAddr.
emitRawPointer(CGF), AO, IsVolatile);
1900 Address DesiredAddr = CreateTempAlloca();
1902 requiresMemSetZero(getAtomicAddress().getElementType())) {
1910 EmitAtomicCompareExchangeLibcall(ExpectedPtr, DesiredPtr, AO, Failure);
1911 CGF.
Builder.CreateCondBr(Res, ExitBB, ContBB);
1915void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
RValue UpdateRVal,
1917 auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1920 auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile,
true);
1924 auto *CurBB = CGF.
Builder.GetInsertBlock();
1926 llvm::PHINode *PHI = CGF.
Builder.CreatePHI(OldVal->getType(),
1928 PHI->addIncoming(OldVal, CurBB);
1929 Address NewAtomicAddr = CreateTempAlloca();
1930 Address NewAtomicIntAddr = castToAtomicIntPointer(NewAtomicAddr);
1932 requiresMemSetZero(getAtomicAddress().getElementType())) {
1938 auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1939 PHI->addIncoming(Res.
first, CGF.
Builder.GetInsertBlock());
1944void AtomicInfo::EmitAtomicUpdate(
1945 llvm::AtomicOrdering AO,
const llvm::function_ref<
RValue(
RValue)> &UpdateOp,
1947 if (shouldUseLibcall()) {
1948 EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1950 EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1954void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO,
RValue UpdateRVal,
1956 if (shouldUseLibcall()) {
1957 EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1959 EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1966 llvm::AtomicOrdering AO;
1968 AO = llvm::AtomicOrdering::SequentiallyConsistent;
1970 AO = llvm::AtomicOrdering::Release;
1982 llvm::AtomicOrdering AO,
bool IsVolatile,
1990 AtomicInfo atomics(*
this, dest);
1991 LValue LVal = atomics.getAtomicLValue();
1996 atomics.emitCopyIntoMemory(rvalue);
2001 if (atomics.shouldUseLibcall()) {
2003 Address srcAddr = atomics.materializeRValue(rvalue);
2020 llvm::Value *ValToStore = atomics.convertRValueToInt(rvalue);
2023 Address Addr = atomics.getAtomicAddress();
2024 if (llvm::Value *
Value = atomics.getScalarRValValueOrNull(rvalue))
2026 Addr = atomics.castToAtomicIntPointer(Addr);
2032 if (AO == llvm::AtomicOrdering::Acquire)
2033 AO = llvm::AtomicOrdering::Monotonic;
2034 else if (AO == llvm::AtomicOrdering::AcquireRelease)
2035 AO = llvm::AtomicOrdering::Release;
2038 store->setAtomic(AO);
2042 store->setVolatile(
true);
2048 atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
2055 llvm::AtomicOrdering
Success, llvm::AtomicOrdering Failure,
bool IsWeak,
2060 Expected.getAggregateAddress().getElementType() ==
2065 AtomicInfo Atomics(*
this, Obj);
2067 return Atomics.EmitAtomicCompareExchange(
Expected, Desired,
Success, Failure,
2071llvm::AtomicRMWInst *
2073 llvm::Value *Val, llvm::AtomicOrdering Order,
2074 llvm::SyncScope::ID SSID,
2076 llvm::AtomicRMWInst *RMW =
2083 LValue LVal, llvm::AtomicOrdering AO,
2084 const llvm::function_ref<
RValue(
RValue)> &UpdateOp,
bool IsVolatile) {
2085 AtomicInfo Atomics(*
this, LVal);
2086 Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
2090 AtomicInfo atomics(*
this, dest);
2092 switch (atomics.getEvaluationKind()) {
2108 bool Zeroed =
false;
2110 Zeroed = atomics.emitMemSetZeroIfNecessary();
2111 dest = atomics.projectValue();
2125 llvm_unreachable(
"bad evaluation kind");
Defines the clang::ASTContext interface.
static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, uint64_t expectedSize)
Does a store of the given IR type modify the full expected width?
static llvm::Value * EmitPostAtomicMinMax(CGBuilderTy &Builder, AtomicExpr::AtomicOp Op, bool IsSigned, llvm::Value *OldVal, llvm::Value *RHS)
Duplicate the atomic min/max operation in conventional IR for the builtin variants that return the ne...
static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, const llvm::function_ref< RValue(RValue)> &UpdateOp, Address DesiredAddr)
static Address EmitValToTemp(CodeGenFunction &CGF, Expr *E)
static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, Address Ptr, Address Val1, Address Val2, llvm::Value *IsWeak, llvm::Value *FailureOrder, uint64_t Size, llvm::AtomicOrdering Order, llvm::SyncScope::ID Scope)
static RValue emitAtomicLibcall(CodeGenFunction &CGF, StringRef fnName, QualType resultType, CallArgList &args)
static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, Address Dest, Address Ptr, Address Val1, Address Val2, llvm::Value *FailureOrderVal, uint64_t Size, llvm::AtomicOrdering SuccessOrder, llvm::SyncScope::ID Scope)
Given an ordering required on success, emit all possible cmpxchg instructions to cope with the provid...
static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, Address Dest, Address Ptr, Address Val1, Address Val2, uint64_t Size, llvm::AtomicOrdering SuccessOrder, llvm::AtomicOrdering FailureOrder, llvm::SyncScope::ID Scope)
static bool shouldCastToInt(llvm::Type *ValTy, bool CmpXchg)
Return true if.
CodeGenFunction::ComplexPairTy ComplexPairTy
static QualType getPointeeType(const MemRegion *R)
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
CanQualType getSizeType() const
Return the unique type for "size_t" (C99 7.17), defined in <stddef.h>.
TypeInfoChars getTypeInfoInChars(const Type *T) const
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
QualType getExtVectorType(QualType VectorType, unsigned NumElts) const
Return the unique reference to an extended vector type of the specified element type and size.
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
unsigned getTargetAddressSpace(LangAS AS) const
AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*, __atomic_load,...
CharUnits - This is an opaque type for sizes expressed in character units.
bool isZero() const
isZero - Test whether the quantity equals zero.
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
CharUnits getAlignment() const
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Address withElementType(llvm::Type *ElemTy) const
Return address with different element type, but same pointer and alignment.
static AggValueSlot ignored()
ignored - Returns an aggregate value slot indicating that the aggregate value is being ignored.
Address getAddress() const
static AggValueSlot forLValue(const LValue &LV, IsDestructed_t isDestructed, NeedsGCBarriers_t needsGC, IsAliased_t isAliased, Overlap_t mayOverlap, IsZeroed_t isZeroed=IsNotZeroed, IsSanitizerChecked_t isChecked=IsNotSanitizerChecked)
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Address CreatePointerBitCastOrAddrSpaceCast(Address Addr, llvm::Type *Ty, llvm::Type *ElementTy, const llvm::Twine &Name="")
llvm::AtomicRMWInst * CreateAtomicRMW(llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, llvm::AtomicOrdering Ordering, llvm::SyncScope::ID SSID=llvm::SyncScope::System)
llvm::CallInst * CreateMemSet(Address Dest, llvm::Value *Value, llvm::Value *Size, bool IsVolatile=false)
Address CreateStructGEP(Address Addr, unsigned Index, const llvm::Twine &Name="")
llvm::AtomicCmpXchgInst * CreateAtomicCmpXchg(Address Addr, llvm::Value *Cmp, llvm::Value *New, llvm::AtomicOrdering SuccessOrdering, llvm::AtomicOrdering FailureOrdering, llvm::SyncScope::ID SSID=llvm::SyncScope::System)
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
llvm::CallInst * CreateMemCpy(Address Dest, Address Src, llvm::Value *Size, bool IsVolatile=false)
Address CreateAddrSpaceCast(Address Addr, llvm::Type *Ty, llvm::Type *ElementTy, const llvm::Twine &Name="")
static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo=CGCalleeInfo())
CGFunctionInfo - Class to encapsulate the information about a function definition.
CallArgList - Type for representing both the value and type of arguments in a call.
void add(RValue rvalue, QualType type)
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
llvm::Value * EmitFromMemory(llvm::Value *Value, QualType Ty)
EmitFromMemory - Change a scalar value from its memory representation to its value representation.
std::pair< RValue, llvm::Value * > EmitAtomicCompareExchange(LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, llvm::AtomicOrdering Success=llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering Failure=llvm::AtomicOrdering::SequentiallyConsistent, bool IsWeak=false, AggValueSlot Slot=AggValueSlot::ignored())
static TypeEvaluationKind getEvaluationKind(QualType T)
getEvaluationKind - Return the TypeEvaluationKind of QualType T.
void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false)
EmitStoreThroughLValue - Store the specified rvalue into the specified lvalue, where both are guarant...
RValue EmitAtomicLoad(LValue LV, SourceLocation SL, AggValueSlot Slot=AggValueSlot::ignored())
bool hasVolatileMember(QualType T)
hasVolatileMember - returns true if aggregate type has a volatile member.
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, const llvm::function_ref< RValue(RValue)> &UpdateOp, bool IsVolatile)
const LangOptions & getLangOpts() const
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal=false, bool IgnoreImag=false)
EmitComplexExpr - Emit the computation of the specified expression of complex type,...
RValue EmitLoadOfLValue(LValue V, SourceLocation Loc)
EmitLoadOfLValue - Given an expression that represents a value lvalue, this method emits the address ...
RValue convertTempToRValue(Address addr, QualType type, SourceLocation Loc)
void EmitAnyExprToMem(const Expr *E, Address Location, Qualifiers Quals, bool IsInitializer)
EmitAnyExprToMem - Emits the code necessary to evaluate an arbitrary expression into the given memory...
llvm::Type * ConvertTypeForMem(QualType T)
RawAddress CreateMemTemp(QualType T, const Twine &Name="tmp", RawAddress *Alloca=nullptr)
CreateMemTemp - Create a temporary memory object of the given type, with appropriate alignmen and cas...
void EmitAtomicInit(Expr *E, LValue lvalue)
const TargetInfo & getTarget() const
llvm::Value * getTypeSize(QualType Ty)
Returns calculated size of the specified type.
Address EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo=nullptr, TBAAAccessInfo *TBAAInfo=nullptr, KnownNonNull_t IsKnownNonNull=NotKnownNonNull)
EmitPointerWithAlignment - Given an expression with a pointer type, emit the value and compute our be...
RValue EmitLoadOfExtVectorElementLValue(LValue V)
void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, AggValueSlot::Overlap_t MayOverlap, bool isVolatile=false)
EmitAggregateCopy - Emit an aggregate copy.
const TargetCodeGenInfo & getTargetHooks() const
void EmitAggExpr(const Expr *E, AggValueSlot AS)
EmitAggExpr - Emit the computation of the specified expression of aggregate type.
llvm::Value * EmitToMemory(llvm::Value *Value, QualType Ty)
EmitToMemory - Change a scalar value from its value representation to its in-memory representation.
RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &Args, llvm::CallBase **CallOrInvoke, bool IsMustTail, SourceLocation Loc, bool IsVirtualFunctionPointerThunk=false)
EmitCall - Generate a call of the given function, expecting the given result type,...
ASTContext & getContext() const
LValue MakeAddrLValue(Address Addr, QualType T, AlignmentSource Source=AlignmentSource::Type)
void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit)
EmitStoreOfComplex - Store a complex number into the specified l-value.
void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit)
llvm::AtomicRMWInst * emitAtomicRMWInst(llvm::AtomicRMWInst::BinOp Op, Address Addr, llvm::Value *Val, llvm::AtomicOrdering Order=llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::ID SSID=llvm::SyncScope::System, const AtomicExpr *AE=nullptr)
Emit an atomicrmw instruction, and applying relevant metadata when applicable.
llvm::LLVMContext & getLLVMContext()
llvm::Value * EmitScalarExpr(const Expr *E, bool IgnoreResultAssign=false)
EmitScalarExpr - Emit the computation of the specified expression of LLVM scalar type,...
bool LValueIsSuitableForInlineAtomic(LValue Src)
void EmitStoreOfScalar(llvm::Value *Value, Address Addr, bool Volatile, QualType Ty, AlignmentSource Source=AlignmentSource::Type, bool isInit=false, bool isNontemporal=false)
EmitStoreOfScalar - Store a scalar value to an address, taking care to appropriately convert from the...
RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc)
This class organizes the cross-function state that is used while generating LLVM code.
llvm::FunctionCallee CreateRuntimeFunction(llvm::FunctionType *Ty, StringRef Name, llvm::AttributeList ExtraAttrs=llvm::AttributeList(), bool Local=false, bool AssumeConvergent=false)
Create or return a runtime function declaration with the specified type and name.
DiagnosticsEngine & getDiags() const
const LangOptions & getLangOpts() const
CodeGenTypes & getTypes()
const llvm::DataLayout & getDataLayout() const
void DecorateInstructionWithTBAA(llvm::Instruction *Inst, TBAAAccessInfo TBAAInfo)
DecorateInstructionWithTBAA - Decorate the instruction with a TBAA tag.
llvm::LLVMContext & getLLVMContext()
llvm::ConstantInt * getSize(CharUnits numChars)
Emit the given number of characters as a value of type size_t.
llvm::FunctionType * GetFunctionType(const CGFunctionInfo &Info)
GetFunctionType - Get the LLVM function type for.
const CGFunctionInfo & arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args)
LValue - This represents an lvalue references.
llvm::Value * getRawExtVectorPointer(CodeGenFunction &CGF) const
llvm::Constant * getExtVectorElts() const
void setAlignment(CharUnits A)
bool isVolatileQualified() const
llvm::Value * getRawBitFieldPointer(CodeGenFunction &CGF) const
CharUnits getAlignment() const
static LValue MakeExtVectorElt(Address Addr, llvm::Constant *Elts, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
Address getAddress() const
llvm::Value * getRawVectorPointer(CodeGenFunction &CGF) const
bool isExtVectorElt() const
llvm::Value * getVectorIdx() const
LValueBaseInfo getBaseInfo() const
const CGBitFieldInfo & getBitFieldInfo() const
TBAAAccessInfo getTBAAInfo() const
Address getVectorAddress() const
static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
Create a new object to represent a bit-field access.
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx, QualType type, LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo)
Address getExtVectorAddress() const
Address getBitFieldAddress() const
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
static RValue get(llvm::Value *V)
static RValue getAggregate(Address addr, bool isVolatile=false)
Convert an Address to an RValue.
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
bool isVolatileQualified() const
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
ReturnValueSlot - Contains the address where the return value of a function can be stored,...
Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull=false) const
virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const
Get the syncscope used in LLVM IR.
virtual void setTargetAtomicMetadata(CodeGenFunction &CGF, llvm::Instruction &AtomicInst, const AtomicExpr *Expr=nullptr) const
Allow the target to apply other metadata to an atomic instruction.
Concrete class used by the front-end to report problems and issues.
DiagnosticBuilder Report(SourceLocation Loc, unsigned DiagID)
Issue the message to the client.
This represents one expression.
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
PointerType - C99 6.7.5.1 - Pointer Declarators.
A (possibly-)qualified type.
bool isNull() const
Return true if this QualType doesn't point to a type yet.
LangAS getAddressSpace() const
Return the address space of this type.
Qualifiers getQualifiers() const
Retrieve the set of qualifiers applied to this type.
QualType getUnqualifiedType() const
Retrieve the unqualified variant of the given type, removing as little sugar as possible.
Scope - A scope is a transient data structure that is used while parsing the program.
Encodes a location in the source.
SourceLocation getBeginLoc() const LLVM_READONLY
unsigned getMaxAtomicInlineWidth() const
Return the maximum width lock-free atomic operation which can be inlined given the supported features...
bool isPointerType() const
const T * castAs() const
Member-template castAs<specific type>.
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
bool isAtomicType() const
bool isFloatingType() const
const T * getAs() const
Member-template getAs<specific type>'.
Represents a GCC generic vector type.
TypeEvaluationKind
The kind of evaluation to perform on values of a particular type.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
bool Load(InterpState &S, CodePtr OpPC)
The JSON file list parser is used to communicate input to InstallAPI.
llvm::StringRef getAsString(SyncScope S)
@ Success
Template argument deduction was successful.
Structure with information about how a bitfield should be accessed.
CharUnits StorageOffset
The offset of the bitfield storage from the start of the struct.
unsigned Offset
The offset within a contiguous run of bitfields that are represented as a single "field" within the L...
unsigned Size
The total size of the bit-field, in bits.
unsigned StorageSize
The storage size in bits which should be used when accessing this bitfield.
llvm::PointerType * VoidPtrTy
llvm::IntegerType * Int8Ty
i8, i16, i32, and i64
llvm::IntegerType * SizeTy
llvm::IntegerType * IntTy
int
llvm::PointerType * UnqualPtrTy