We present a method for growing bit patterned magnetic recording media using directed growth of sputtered granular perpendicular magnetic recording media. The grain nucleation is templated using an epitaxial seed layer, which contains Pt... more
We present a method for growing bit patterned magnetic recording media using directed growth of sputtered granular perpendicular magnetic recording media. The grain nucleation is templated using an epitaxial seed layer, which contains Pt pillars separated by amorphous metal oxide. The scheme enables the creation of both templated data and servo regions suitable for high density hard disk drive operation. We illustrate the importance of using a process that is both topographically and chemically driven to achieve high quality media.
Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component,... more
Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component, the nanoscale magnetic tunneling junction (MTJ), is thought to be radiation hard, making it attractive for space and nuclear technology applications. However, studies on the effects of ionizing radiation on the STT-MRAM writing process are lacking for MTJs with perpendicular magnetic anisotropy (pMTJs) required for scalable applications. Particularly, the question of the impact of extreme total ionizing dose on perpendicular magnetic anisotropy, which plays a crucial role on thermal stability and critical writing current, remains open. Here we report measurements of the impact of high doses of gamma and neutron radiation on nanoscale pMTJs used in STT-MRAM. We characterize the tunneling magnetoresistance, the magnetic field switching, and the current...