Coriolis effect

From Wikimedia Commons, the free media repository
Jump to navigation Jump to search
<nowiki>efecto Coriolis; efekt Coriolisa; Кориолис күші; Kesan Coriolis; كورىيولىيس كۇشى; Кориолисова сила; forța Coriolis; کوریولیس فورس; Coriolisova sila; сила Коріоліса; 科里奧利力; Coriolis-efekto; Sayyora uchun Koriolis kuchi; Кориолис күші; Koriolisforto; Coriolisova síla; कोरिओलिस बल; কোরিওলিস প্রভাব; force de Coriolis; Кориолис вăйĕ; Hiệu ứng Coriolis; كورىيولىيس كۇشى; Koriolisa spēks; Corioliskrag; Кориолисов ефекат; 科里奥利力; Кориолис күші; Corioliskrafta; Corioliskraft; éfék Coriolis; کاریگەریی کۆریۆلیس; Coriolis force; تأثير كوريوليس; Coriolis力; Korïolïs küşi; Coriolis efektua; Efectu Coriolis; сила Кориолиса; Δύναμη Κοριόλις; Corioliskraft; fòrza del Coriolis; Iarmhairt Coriolis; اثر کوریولیس; 科里奥利力; Korioliskrêft; კორიოლისის ძალა; コリオリの力; 코리올리 효과; 科里奧利力; Koriolis qüvvəsi; Korïolïs küşi; כוח קוריוליס; Кориолис көче; força inercial de Coriolis; कॉरिऑलिस प्रभाव; కోరియోలిస్ ప్రభావం; Coriolis-ilmiö; fòrça de Coriolis; Coriolis effect; Corioliseffekten; கோரியாலிஸ் விளைவு; forza di Coriolis; corioliseffect; Coriolisi efekt; efè Coriolis; сіла Карыяліса; Coriolis force; Efek Coriolis; Coriolis etkisi; Кориолисов ефекат; Coriolis effect; forza di Coriolis; Koriolisov efekat; Coriolis-erő; сіла Карыёліса; efecte de Coriolis; Koriolio efektas; Coriolisova sila; Կորիոլիսի ուժ; Fuqia e Koriolit; Кориолисова сила; โคริออลิส; efekt Coriolisa; കൊറിയോലിസ് ബലം; Coriolisov učinak; 科里奥利力; Corioliseffekten; 科里奧利力; Vis Coriolis; forza de Coriolis; 科里奥利力; 科里奥利力; Coriolisov učinak; efecto observado en sistemas en rotación; গতিশীল বস্তুসমূহের আপাত বিচ্যুতি; force inertielle dans un référentiel en rotation uniforme; адна з інэрцыйных сілаў; одна из сил инерции, использующаяся при рассмотрении движения материальной точки относительно вращающейся системы отсчёта; Schein- oder Trägheitskraft in einem rotierenden Bezugssystem; Força sobre objetos que se movem dentro de um referencial que gira em relação a um referencial inercial; deflection of moving objects in physics; 慣性力的一種; effekt som påvirker legemer, der er i bevægelse i forhold til et koordinatsystem, der roterer jævnt i forhold til et inertialsystem; dünyanın kendi etrafında dönmesi sonucu oluşan rüzgar hareketi; 回転座標系における慣性力の一種; zjawisko bezwładności ciał w ruchu; סוג של כוח אנרציאלי; afbuiging van de baan van een voorwerp dat beweegt in een roterend systeem; Akcelo orta al la direkto de la movo, kiu faras, ke ĉiuj senfortaj movoj ŝajnas fleksitaj observate de rotaciaj sistemoj; 一种惯性力; forza apparente; fysikaalinen ilmiö; apparent or fictitious force on objects moving within a reference frame that rotates with respect to an inertial frame; deflection of moving objects in physics; setrvačná (zdánlivá) síla působící na tělesa pohybující se v rotující neinerciální vztažné soustavě; एक तरह के छद्म-बल जे घुमरियावत संदर्भ फ्रेम में गतिमान बस्तु पर लागत बुझाला; fuerza de Coriolis; efecto de Coriolis; Śůła Coriolisa; Кориолисова сила; Кориолиса ускорение; Кориолисово ускорение; Кориолиса сила; эффект Кориолиса; сила Кариолиса; ускорение Кориолиса; теорема Кориолиса; теорема о сложении ускорений; поворотное ускорение; Corioliseffekt; Korioliskraft; Coriolisbewegung; Coriolis-Effekt; Coriolis-Kraft; Coriolisbeschleunigung; адхіляючая сіла вярчэння Зямлі; نیروی کوریولیس; نیروی کریولیس; کریولیس; اثر کریولیس; Ефект на Кориолис; Сила на кориолис; Corioliseffekt; Corioliskraften; Corioliskraft; Koriolis; Coriolis kuvveti; Coriolis kuvvet; 転向力; コリオリ力; Corioliskraft; Corioliseffekt; Corioliskraften; Korioliskraft; Коріолісова сила; ефект Каріоліса; відхиляюча сила обертання; Coriolisvoima; Coriolis; Coriolisin voima; Corioliskiihtyvyys; Coriolisilmiö; Koriolis-forto; Forto de Coriolis; Coriolisův efekt; Koriolisova síla; Coriolisův jev; कोरिओलिस परभाव; कोरिओलिस प्रभाव; कोरियॉलिस बल; کریولیس; কোরিয়োলি বল; force d'inertie de Coriolis; effet de Coriolis; effet Coriolis; efè Koryolis; Coriolise efekt; Coriolise jõud; Coriolisi jõud; efeito de Coriolis; força de Coriolis; aceleração de Coriolis; efeito Coriolis; pseudoforça de Coriolis; 코리올리 힘; 편향력; 코리올리의 힘; 코리올리힘; 전향력; Δύναμη Coriolis; Força de Coriolis; Acceleració de Coriolis; Forces de Coriolis; Coriolis; Efecte Coriolis; Koriolio jėga; Coriolijeva sila; efecto Coriolis; efecto de Coriolis; Przyspieszenie Coriolisa; Siła Coriolisa; Siły Coriolisa; Odchylenie ciał swobodnie spadających na wschód; תוצא קוריוליס; כח קוריוליס; תאוצת קוריוליס; אפקט קוריוליס; Lực Coriolis; Corioliskraft; Corioliseffekt; Corioliseffekten; Coriolis; Korioliskrafta; Ferrels lov; Coriolis; Corioliseffekten; Coriolisaksellerasjon; Corioliskraften; Corioliseffekt; coriolisversnelling; coriolis kracht; corioliskracht; forţa Coriolis; efectul Coriolis; effetto boreale; legge di Ferrel; effetto Coriolis; effetto di Coriolis; velocità di Coriolis; accelerazione di Coriolis; Devijatorna sila; Coriolisova sila; കൊറിയോലിസിസ് ബലം; കൊറിയോലിസ് പ്രഭാവം; Coriolis effect; Coriolis force; Coriolis effect; قوى كوريوليس; قوة كوريوليس; تاثير كوريوليس; قانون فرل; 地转偏向力; 科里奧利力; 科氏力; 地轉偏移力; 地转偏向力; 柯氏力; 地球自轉偏向力</nowiki>
Coriolis force 
apparent or fictitious force on objects moving within a reference frame that rotates with respect to an inertial frame
Upload media
Pronunciation audio
Subclass of
Named after
Discoverer or inventor
Time of discovery or invention
  • 1835
Different from
Authority file
Wikidata Q169973
GND ID: 4259538-1
Library of Congress authority ID: sh85032605
J9U ID: 987007565387505171
Edit infobox data on Wikidata
English: In physics, the Coriolis effect is an inertial force first described by Gaspard-Gustave Coriolis, a French scientist, in 1835.
The Earth is rotating, and therefore it is an oblate spheroid (like a football with flattned ends). The vector representing true gravity can be decomposed in a component perpendicular to the surface and a component perpendicular to the Earth's axis. The component of true gravity that acts perpendicular to the Earth's axis provides the force that keeps objects at the same latitude.

In the hypothetical case of a perfectly spherical rotating celestial body, all water and air would gather at the equator.

Each component of true gravity has a different effect: the effect of the perpendicular to the surface component is that objects remain tightly on Earth; the effect of the perpendicular to the Earth's axis component is that all objects that are stationary with respect to the Earth remain on the same latitude, rather than sliding to the equator.

The arrow on the outside shows the local direction of a plumb line; the line that is perpendicular to the surface.

The Earth has taken a shape such that the direction of the gravitational force is slightly tilted to the Earth surface. The equatorial component of this force

counteracts the "centrifugal force" preventing air and water to slip towards the equator. In case of a wind in eastward direction the centrifugal force of the atmosphere is stronger and a slip towards the equator is initiated. In case of a wind in westward direction the centrifugal force of the atmosphere is weaker and a slip away from the equator is initiated. This is the "coriolis effect" for east/west winds

Due to the coriolis effect the wind direction turns right in the northern hemisphere and left in the southern hemisphere resulting in spiral. The reason for an east/west wind to turn is explained in the figure above. The reason for a north/south wind to turn is simply the difference in eastward velocity of the ground at different latitudes. The detailed mathematics of this can be found in

https://wgpqqror.homepage.t-online.de/coriolis.pdf archive copy at the Wayback Machine

Schematic representation of flow around a low pressure area. Pressure gradient force represented by blue arrows, The Coriolis effect tendency, always perpendicular to the velocity, by red arrows.
Parabolic shape formed by the surface of a liquid under rotation.
Schematic representation of harmonic oscillation on parabolic surface. The concavity is exaggerated. This animation offers a sideview of what happens in the next animation (Image:Coriolis_effect06.gif).
Schematic representation of a puck moving over a parabolical surface.

When the centripetal force causes the puck to move closer to the center of attraction the centripetal force is accelerating the puck, so the angular velocity of the puck increases. This is an example of the coriolis effect.

the elliptical trajectory of the preceding animation as seen by a videocamera that is co-rotating with the turntable.

Due to the coriolis effect demonstrated in the preceding animation (Image:Coriolis_effect06.gif), the angular velocity of the puck is changing continuously. As seen from a rotating point of view there is an apparent motion along a small circle.

The parametric equation is as follows:

This can also be written as follows, showing that the elliptical motion with that particular velocity profile can be seen as a vector addition of two uniform circular motions:

To be used in conjunction with the animations Image:Coriolis_effect06.gif and Image:Coriolis_effect.07.gif.

The blue dot is an object that is being thrown back and forth from the inner platform to the outer platform. During the flight there is no force acting on the object, so it moves in a straight line, the target is moving along a curvilinear trajectory.
This image presents a hypothetical situation. If masses of air can flow without meeting any resistance, how will they flow? Due to the shape of the Earth, the motion will tend to follow so-called inertial circles. These circles correspond to what is shown in Image:Coriolis_effect07.gif and in Image:Mass point affected by coriolis.svg
Schematic, simplified representation of atmospheric inertial oscillation as seen from a non-rotating point of view. The black globe represents a weather balloon being swept along with inertial wind. Inertial wind is the name for the wind pattern that can occur in the absence of a pressure gradient.

With friction very small, inertial wind is a form of frictionless motion over the surface of an oblate spheriod. The Earth is an oblate spheroid, because it is rotating.

The vertical circles are not meridians. One full cycle of the animation corresponds to 24 hours. When the air mass is moving nearer to the pole it is picking up speed. Furthest away from the poles the velocity is slowest (flowing east to west with respect to the Earth). The velocity with respect to the Earth is close to constant, the direction with respect to the Earth is continuously changing to the left.

To be used in conjunction with the image Image:Coriolis_effect14.png

Visualisation of the coriolis effect.

In the inertial frame of reference (upper part of the picture), the black object moves in a straight line. However, the observer (red dot) who is standing in the rotating frame of reference (lower part of the picture) sees the object as following a curved path.

How the coriolis effects work

The red line is an object on earth travelling from point P at the speed (V_total). For the coriolis effect only the horizontal speed (V_horizontal) is of importance. To get from one can say:

The coriolis force is: