Authors: Grant, Philip | Pant, Harish C.
Article Type: Research Article
Abstract: At autopsy, a most distinctive pathology seen in Alzheimer's disease (AD) brains is numerous abnormal neurons filled with neurofibrillary tangles (NFTs) containing stable complexes of hyperphosphorylated tau (PHF), neurofilaments and various kinases, among other proteins. Though these neuronal aggregates have been actively studied, their nature and origin are still poorly understood. Our studies of regulation of phosphorylation in neurons of the squid giant fiber system, using P13suc1 affinity chromatography, suggest that neuronal phosphorylation of cytoskeletal proteins is compartmentalized into active axonal and inactive cell body-specific multimeric complexes of kinases, substrates and phosphatases. To determine whether such compartment-specific phosphorylation complexes are …present in human brains, we separated gray matter (enriched in cell bodies) and white matter (enriched in axons) from normal and AD brains and studied the total kinase activities in lysates, pellets and P13suc1 complexes. In addition, Western blot analysis was used to characterize the proteins associated with P13suc1 multimeric complexes extracted from gray and white matter. We tested the hypothesis that P13 phosphorylation complexes were abnormally compartmentalized in AD neurons with the more active complexes shifted to cell bodies (gray matter) instead of axons (white matter). We found that (1) endogenous and exogenous substrate-dependent kinase activities of AD and control brain extracts were similar in both gray and white matter. (2) Long post mortem times tend to erase any differences in kinase activity between control and AD extracts. In contrast to shorter post mortem times (4.5–10 hrs), long post mortem times (13–34 hrs) significantly minimize the variances in kinase activities between control and AD brain extracts suggesting that cell death and proteolysis may eliminate any intrinsic differences in enzyme activities. (3) Except for the significantly higher level of histone phosphorylation in control white extracts, the kinase activities of P13suc1 -derived multimeric complexes from gray and white matter were also similar in control and AD brains. Here, too, variances between control and AD distributions were significantly different (p < 0.001–0.02) suggesting that the P13 complexes were different. We also found differences in the Western blot profiles of P13suc1-associated kinases and cytoskeletal proteins; higher expression of phosphorylated NF-H and PHF-tau in gray matter of AD brains was detected. We believe that such differences in P13 complexes from human control and AD brain samples displaying extensive heterogeneity in age, post mortem time and clinical history, may be important. Show more
DOI: 10.3233/JAD-2002-4402
Citation: Journal of Alzheimer's Disease, vol. 4, no. 4, pp. 269-281, 2002
Authors: Grant, Philip W. | Haveraaen, Magne | Webster, Michael F.
Article Type: Research Article
Abstract: It has long been acknowledged that the development of scientific applications is in need of better software engineering practices. Here we contrast the difference between conventional software development of CFD codes with a method based on coordinate free mathematics. The former approach leads to programs where different aspects, such as the discretisation technique and the coordinate systems, can get entangled with the solver algorithm. The latter approach yields programs that segregate these concerns into fully independent software modules. Such considerations are important for the construction of numerical codes for practical problems. The two approaches are illustrated on the coating problem: …the simulation of coating a wire with a polymer. Show more
Citation: Scientific Programming, vol. 8, no. 4, pp. 211-230, 2000
Authors: BK, Binukumar | Zheng, Ya-Li | Shukla, Varsha | Amin, Niranjana D. | Grant, Philip | Pant, Harish C.
Article Type: Research Article
Abstract: Multiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine protein kinase, which forms active complexes with p35 or p39, found principally in neurons and in pancreatic β cells. Recent studies suggest that Cdk5 hyperactivity is a possible link between neuropathology seen in AD and diabetes. Previously, we identified P5, a truncated 24-aa peptide derived from the Cdk5 activator p35, later modified as TFP5, so as to penetrate the blood-brain barrier after intraperitoneal …injections in AD model mice. This treatment inhibited abnormal Cdk5 hyperactivity and significantly rescued AD pathology in these mice. The present study explores the potential of TFP5 peptide to rescue high glucose (HG)-mediated toxicity in rat embryonic cortical neurons. HG exposure leads to Cdk5-p25 hyperactivity and oxidative stress marked by increased reactive oxygen species production, and decreased glutathione levels and superoxide dismutase activity. It also induces hyperphosphorylation of tau, neuroinflammation as evident from the increased expression of inflammatory cytokines like TNF-α, IL-1β, and IL-6, and apoptosis. Pretreatment of cortical neurons with TFP5 before HG exposure inhibited Cdk5-p25 hyperactivity and significantly attenuated oxidative stress by decreasing reactive oxygen species levels, while increasing superoxide dismutase activity and glutathione. Tau hyperphosphorylation, inflammation, and apoptosis induced by HG were also considerably reduced by pretreatment with TFP5. These results suggest that TFP5 peptide may be a novel candidate for type 2 diabetes therapy. Show more
Keywords: Alzheimer's disease, cyclin dependent kinase 5, diabetes, neuroinflammation, oxidative stress
DOI: 10.3233/JAD-131784
Citation: Journal of Alzheimer's Disease, vol. 39, no. 4, pp. 899-909, 2014
Authors: Shukla, Varsha | Seo, Jinsoo | Binukumar, B.K. | Amin, Niranjana D. | Reddy, Preethi | Grant, Philip | Kuntz, Susan | Kesavapany, Sashi | Steiner, Joseph | Mishra, Santosh K. | Tsai, Li-Huei | Pant, Harish C.
Article Type: Research Article
Abstract: It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer’s disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain …barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide’s efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5. Show more
Keywords: Alzheimer’s disease, cyclin-dependent kinase 5, hyperphosphorylation, synaptic function, TFP5
DOI: 10.3233/JAD-160916
Citation: Journal of Alzheimer's Disease, vol. 56, no. 1, pp. 335-349, 2017
Authors: Binukumar, B.K. | Pelech, Steven L. | Sutter, Catherine | Shukla, Varsha | Amin, Niranjana D. | Grant, Philip | Bhaskar, Manju | Skuntz, Suzanne | Steiner, Joseph | Pant, Harish C.
Article Type: Research Article
Abstract: Cyclin-dependent kinase 5 (CDK5) is a multifunctional serine/threonine kinase that regulates a large number of neuronal processes essential for nervous system development and function with its activator p35 CDK5R1. Upon neuronal insults, p35 is proteolyzed and cleaved to p25 producing deregulation and hyperactivation of CDK5 (CDK5/p25), implicated in tau hyperphosphorylation, a pathology in some neurodegenerative diseases. A truncated, 24 amino acid peptide, p5, derived from p35 inhibits the deregulated CDK5 phosphotransferase activity and ameliorates Alzheimer’s disease (AD) phenotypes in AD model mice. In the present study, we have screened a diverse panel of 70 human protein kinases for their sensitivities …to p5, and a subset of these to p35. At least 16 of the tested protein kinases exhibited IC50 values that were 250 μM or less, with CAMK4, ZAP70, SGK1, and PIM1 showing greater sensitivity to inhibition by p5 than CDK5/p35 and CDK5/p25. In contrast, the p5 peptide modestly activated LKB1 and GSK3β . A sub set of kinases screened against p35 showed that activity of CAMK4 in the absence of calcium and calmodulin was also markedly inhibited by p35. The Cyclin Y-dependent kinases PFTK1 (CDK14) and PCTK1 (CDK16) were activated by p35 at least 10-fold in the absence of Cyclin Y and by approximately 50% in its presence. These findings provide additional insights into the mechanisms of action for p5 and p35 in the regulation of protein phosphorylation in the nervous system. Show more
Keywords: Alzheimer’s disease, cyclin-dependent kinase 5 activator, p35 CDK5R1, tau phosphorylation
DOI: 10.3233/JAD-160458
Citation: Journal of Alzheimer's Disease, vol. 54, no. 2, pp. 525-533, 2016