Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
We report I-band photometric observations of the radio-detected M9.5 dwarf BRI 0021−0214, obtained with the Galway Ultra Fast Imager on the 1.8 m Vatican Advanced Technology Telescope (VATT) at Mt. Graham International Observatory,... more
We report I-band photometric observations of the radio-detected M9.5 dwarf BRI 0021−0214, obtained with the Galway Ultra Fast Imager on the 1.8 m Vatican Advanced Technology Telescope (VATT) at Mt. Graham International Observatory, Arizona. In total, 19 h of observations over a 73 d baseline were obtained. BRI 0021−0214 was shown to exhibit modulated emission with a period of 3.052 ± 0.004 h with a mean amplitude variability of 0.0044 mag. When combined with rotational velocity data obtained from previous work, our newly discovered rotation period gives an inclination angle of 51.7$^{+5.0}_{-4.5}$ deg for the rotation axis of BRI 0021-0214 relative to our line of sight. Previous studies have reported that the most plausible cause for optical variability from this dwarf is a consequence of suspended co-rotating dust clouds in its atmosphere. However, reports of enhanced Hα and intermittent coherent radio emission suggest the possibility of auroral activity in its magnetosphere. Furth...
We report I-band photometric observations of the radio-detected M9.5 dwarf BRI 0021-0214, obtained with the Galway Ultra Fast Imager (GUFI) on the 1.8m Vatican Advanced Technology Telescope VATT at Mt. Graham International Observatory,... more
We report I-band photometric observations of the radio-detected M9.5 dwarf BRI 0021-0214, obtained with the Galway Ultra Fast Imager (GUFI) on the 1.8m Vatican Advanced Technology Telescope VATT at Mt. Graham International Observatory, Arizona. In total, 19 hours of observations over a 73 day baseline were obtained. BRI 0021-0214 was shown to exhibit modulated emission with a period of 3.052 ± 0.004 hours with a mean amplitude variability of 0.0044 mag. When combined with rotational velocity data obtained from previous work, our newly discovered rotation period gives an inclination angle of 51.7 +5.0 −4.5 degrees for the rotation axis of BRI 0021-0214 relative to our line of sight. Previous studies have reported that the most plausible cause for optical variability from this dwarf is a consequence of suspended co-rotating dust clouds in its atmosphere. However reports of enhanced H α and intermittent coherent radio emission suggest the possibility of auroral activity in its magnetosphere. Further, more coordinated multiwavlength observations of this dwarf could fully resolve the nature of this elusive rapid-rotator object's observational properties.
A classical nova is an eruption on the surface of a white dwarf in an accreting binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell. The shaping mechanisms of nova shells are probes of... more
A classical nova is an eruption on the surface of a white dwarf in an accreting binary system. The material ejected from the white dwarf surface generally forms an axisymmetric shell. The shaping mechanisms of nova shells are probes of the processes that take place at energy scales between planetary nebulae and supernova remnants. We report on the discovery of nova shells surrounding the post-nova systems V4362 Sagittarii (1994) and more limited observations of DO Aquilae (1925). Distance measurements of 0.5 +1.4 −0.2 kpc for V4362 Sgr and 6.7 ± 3.5 kpc for DO Aql are found based on the expansion parallax method. The growth rates are measured to be 0.07 /year for DO Aql and 0.32 /year for V4362 Sgr. A preliminary investigation into the ionisation structure of the nova shell associated with V4362 Sgr is presented. The observed ionisation structure of nova shells depends strongly on their morphology and the orientation of the central component towards the observer. X-ray, IR and UV observations as well as optical integral field unit spectroscopy are required to better understand these interesting objects.