default search action
Guy Katz
Person information
- affiliation: The Hebrew University of Jerusalem, Israel
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j12]Davide Corsi, Guy Amir, Andoni Rodríguez, Guy Katz, César Sánchez, Roy Fox:
Verification-Guided Shielding for Deep Reinforcement Learning. RLJ 4: 1759-1780 (2024) - [j11]Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, Michael Schapira:
Verifying the Generalization of Deep Learning to Out-of-Distribution Domains. J. Autom. Reason. 68(3): 17 (2024) - [j10]Ophir M. Carmel, Guy Katz:
On Reducing Undesirable Behavior in Deep-Reinforcement-Learning-Based Software. Proc. ACM Softw. Eng. 1(FSE): 1518-1539 (2024) - [j9]Yizhak Yisrael Elboher, Elazar Cohen, Guy Katz:
On applying residual reasoning within neural network verification. Softw. Syst. Model. 23(3): 721-736 (2024) - [c65]Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, Clark W. Barrett:
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks. CAV (2) 2024: 249-264 - [c64]Guy Amir, Shahaf Bassan, Guy Katz:
Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation. ECAI 2024: 818-825 - [c63]Shahaf Bassan, Guy Amir, Guy Katz:
Local vs. Global Interpretability: A Computational Complexity Perspective. ICML 2024 - [c62]Diganta Mukhopadhyay, Sanaa Siddiqui, Hrishikesh Karmarkar, Kumar Madhukar, Guy Katz:
Learning DNN Abstractions using Gradient Descent. ASE 2024: 2299-2303 - [c61]David Harel, Guy Katz, Assaf Marron, Smadar Szekely:
On Augmenting Scenario-Based Modeling with Generative AI. MODELSWARD 2024: 235-246 - [c60]Jiaxu Tian, Dapeng Zhi, Si Liu, Peixin Wang, Guy Katz, Min Zhang:
Taming Reachability Analysis of DNN-Controlled Systems via Abstraction-Based Training. VMCAI (2) 2024: 73-97 - [e3]Guy Avni, Mirco Giacobbe, Taylor T. Johnson, Guy Katz, Anna Lukina, Nina Narodytska, Christian Schilling:
AI Verification - First International Symposium, SAIV 2024, Montreal, QC, Canada, July 22-23, 2024, Proceedings. Lecture Notes in Computer Science 14846, Springer 2024, ISBN 978-3-031-65111-3 [contents] - [i56]David Harel, Guy Katz, Assaf Marron, Smadar Szekely:
On Augmenting Scenario-Based Modeling with Generative AI. CoRR abs/2401.02245 (2024) - [i55]Guy Katz, Natan Levy, Idan Refaeli, Raz Yerushalmi:
DEM: A Method for Certifying Deep Neural Network Classifier Outputs in Aerospace. CoRR abs/2401.02283 (2024) - [i54]Haoze Wu, Omri Isac, Aleksandar Zeljic, Teruhiro Tagomori, Matthew L. Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, Clark W. Barrett:
Marabou 2.0: A Versatile Formal Analyzer of Neural Networks. CoRR abs/2401.14461 (2024) - [i53]Yizhak Yisrael Elboher, Raya Elsaleh, Omri Isac, Mélanie Ducoffe, Audrey Galametz, Guillaume Povéda, Ryma Boumazouza, Noémie Cohen, Guy Katz:
Robustness Assessment of a Runway Object Classifier for Safe Aircraft Taxiing. CoRR abs/2402.00035 (2024) - [i52]Davide Corsi, Guy Amir, Guy Katz, Alessandro Farinelli:
Analyzing Adversarial Inputs in Deep Reinforcement Learning. CoRR abs/2402.05284 (2024) - [i51]Marco Casadio, Tanvi Dinkar, Ekaterina Komendantskaya, Luca Arnaboldi, Omri Isac, Matthew L. Daggitt, Guy Katz, Verena Rieser, Oliver Lemon:
NLP Verification: Towards a General Methodology for Certifying Robustness. CoRR abs/2403.10144 (2024) - [i50]Remi Desmartin, Omri Isac, Ekaterina Komendantskaya, Kathrin Stark, Grant O. Passmore, Guy Katz:
A Certified Proof Checker for Deep Neural Network Verification. CoRR abs/2405.10611 (2024) - [i49]Udayan Mandal, Guy Amir, Haoze Wu, Ieva Daukantas, Fletcher Lee Newell, Umberto J. Ravaioli, Baoluo Meng, Michael Durling, Milan Ganai, Tobey Shim, Guy Katz, Clark W. Barrett:
Formally Verifying Deep Reinforcement Learning Controllers with Lyapunov Barrier Certificates. CoRR abs/2405.14058 (2024) - [i48]Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, Michael Schapira:
Verifying the Generalization of Deep Learning to Out-of-Distribution Domains. CoRR abs/2406.02024 (2024) - [i47]Shahaf Bassan, Guy Amir, Guy Katz:
Local vs. Global Interpretability: A Computational Complexity Perspective. CoRR abs/2406.02981 (2024) - [i46]Andoni Rodríguez, Guy Amir, Davide Corsi, César Sánchez, Guy Katz:
Shield Synthesis for LTL Modulo Theories. CoRR abs/2406.04184 (2024) - [i45]Davide Corsi, Guy Amir, Andoni Rodríguez, César Sánchez, Guy Katz, Roy Fox:
Verification-Guided Shielding for Deep Reinforcement Learning. CoRR abs/2406.06507 (2024) - [i44]Avraham Raviv, Yizhak Y. Elboher, Michelle Aluf-Medina, Yael Leibovich Weiss, Omer Cohen, Roy Assa, Guy Katz, Hillel Kugler:
Formal Verification of Object Detection. CoRR abs/2407.01295 (2024) - [i43]Udayan Mandal, Guy Amir, Haoze Wu, Ieva Daukantas, Fletcher Lee Newell, Umberto J. Ravaioli, Baoluo Meng, Michael Durling, Kerianne Hobbs, Milan Ganai, Tobey Shim, Guy Katz, Clark W. Barrett:
Safe and Reliable Training of Learning-Based Aerospace Controllers. CoRR abs/2407.07088 (2024) - [i42]Guy Amir, Shahaf Bassan, Guy Katz:
Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation. CoRR abs/2408.03915 (2024) - 2023
- [j8]Christopher A. Strong, Haoze Wu, Aleksandar Zeljic, Kyle D. Julian, Guy Katz, Clark W. Barrett, Mykel J. Kochenderfer:
Global optimization of objective functions represented by ReLU networks. Mach. Learn. 112(10): 3685-3712 (2023) - [j7]Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, Assaf Marron:
Enhancing Deep Reinforcement Learning with Scenario-Based Modeling. SN Comput. Sci. 4(2): 156 (2023) - [c59]Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, Michael Schapira:
Verifying Generalization in Deep Learning. CAV (2) 2023: 438-455 - [c58]Omri Isac, Yoni Zohar, Clark W. Barrett, Guy Katz:
DNN Verification, Reachability, and the Exponential Function Problem. CONCUR 2023: 26:1-26:18 - [c57]Guy Amir, Ziv Freund, Guy Katz, Elad Mandelbaum, Idan Refaeli:
veriFIRE: Verifying an Industrial, Learning-Based Wildfire Detection System. FM 2023: 648-656 - [c56]Shahaf Bassan, Guy Amir, Davide Corsi, Idan Refaeli, Guy Katz:
Formally Explaining Neural Networks within Reactive Systems. FMCAD 2023: 1-13 - [c55]Raya Elsaleh, Guy Katz:
DelBugV: Delta-Debugging Neural Network Verifiers. FMCAD 2023: 34-43 - [c54]Remi Desmartin, Omri Isac, Grant O. Passmore, Kathrin Stark, Ekaterina Komendantskaya, Guy Katz:
Towards a Certified Proof Checker for Deep Neural Network Verification. LOPSTR 2023: 198-209 - [c53]Elazar Cohen, Yizhak Yisrael Elboher, Clark W. Barrett, Guy Katz:
Tighter Abstract Queries in Neural Network Verification. LPAR 2023: 124-143 - [c52]Adiel Ashrov, Guy Katz:
Enhancing Deep Learning with Scenario-Based Override Rules: A Case Study. MODELSWARD 2023: 253-268 - [c51]Shahaf Bassan, Guy Katz:
Towards Formal XAI: Formally Approximate Minimal Explanations of Neural Networks. TACAS (1) 2023: 187-207 - [c50]Xingwu Guo, Ziwei Zhou, Yueling Zhang, Guy Katz, Min Zhang:
OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep Neural Networks. TACAS (1) 2023: 208-226 - [c49]Guy Amir, Davide Corsi, Raz Yerushalmi, Luca Marzari, David Harel, Alessandro Farinelli, Guy Katz:
Verifying Learning-Based Robotic Navigation Systems. TACAS (1) 2023: 607-627 - [c48]Natan Levy, Raz Yerushalmi, Guy Katz:
gRoMA: A Tool for Measuring the Global Robustness of Deep Neural Networks. AISoLA 2023: 160-170 - [e2]Nina Narodytska, Guy Amir, Guy Katz, Omri Isac:
Proceedings of the 6th Workshop on Formal Methods for ML-Enabled Autonomous Systems, FoMLAS@CAV 2023, Paris, France, July 17-18, 2023. Kalpa Publications in Computing 16, EasyChair 2023 [contents] - [i41]Natan Levy, Raz Yerushalmi, Guy Katz:
gRoMA: a Tool for Measuring Deep Neural Networks Global Robustness. CoRR abs/2301.02288 (2023) - [i40]Adiel Ashrov, Guy Katz:
Enhancing Deep Learning with Scenario-Based Override Rules: a Case Study. CoRR abs/2301.08114 (2023) - [i39]Xingwu Guo, Ziwei Zhou, Yueling Zhang, Guy Katz, Min Zhang:
OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep Neural Networks. CoRR abs/2301.11912 (2023) - [i38]Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, Michael Schapira:
Verifying Generalization in Deep Learning. CoRR abs/2302.05745 (2023) - [i37]Omri Isac, Yoni Zohar, Clark W. Barrett, Guy Katz:
DNN Verification, Reachability, and the Exponential Function Problem. CoRR abs/2305.06064 (2023) - [i36]Raya Elsaleh, Guy Katz:
DelBugV: Delta-Debugging Neural Network Verifiers. CoRR abs/2305.18558 (2023) - [i35]Remi Desmartin, Omri Isac, Grant O. Passmore, Kathrin Stark, Guy Katz, Ekaterina Komendantskaya:
Towards a Certified Proof Checker for Deep Neural Network Verification. CoRR abs/2307.06299 (2023) - [i34]Shahaf Bassan, Guy Amir, Davide Corsi, Idan Refaeli, Guy Katz:
Formally Explaining Neural Networks within Reactive Systems. CoRR abs/2308.00143 (2023) - [i33]Ophir M. Carmel, Guy Katz:
On Reducing Undesirable Behavior in Deep Reinforcement Learning Models. CoRR abs/2309.02869 (2023) - 2022
- [j6]Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, Mykel J. Kochenderfer:
Reluplex: a calculus for reasoning about deep neural networks. Formal Methods Syst. Des. 60(1): 87-116 (2022) - [c47]Matan Ostrovsky, Clark W. Barrett, Guy Katz:
An Abstraction-Refinement Approach to Verifying Convolutional Neural Networks. ATVA 2022: 391-396 - [c46]Idan Refaeli, Guy Katz:
Minimal Multi-Layer Modifications of Deep Neural Networks. NSV/FoMLAS@CAV 2022: 46-66 - [c45]Marco Casadio, Ekaterina Komendantskaya, Matthew L. Daggitt, Wen Kokke, Guy Katz, Guy Amir, Idan Refaeli:
Neural Network Robustness as a Verification Property: A Principled Case Study. CAV (1) 2022: 219-231 - [c44]Tom Zelazny, Haoze Wu, Clark W. Barrett, Guy Katz:
On Optimizing Back-Substitution Methods for Neural Network Verification. FMCAD 2022: 17-26 - [c43]Guy Amir, Tom Zelazny, Guy Katz, Michael Schapira:
Verification-Aided Deep Ensemble Selection. FMCAD 2022: 27-37 - [c42]Omri Isac, Clark W. Barrett, Min Zhang, Guy Katz:
Neural Network Verification with Proof Production. FMCAD 2022: 38-48 - [c41]Natan Levy, Guy Katz:
RoMA: A Method for Neural Network Robustness Measurement and Assessment. ICONIP (4) 2022: 92-105 - [c40]Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, Assaf Marron:
Scenario-assisted Deep Reinforcement Learning. MODELSWARD 2022: 310-319 - [c39]Yizhak Yisrael Elboher, Elazar Cohen, Guy Katz:
Neural Network Verification Using Residual Reasoning. SEFM 2022: 173-189 - [c38]Haoze Wu, Aleksandar Zeljic, Guy Katz, Clark W. Barrett:
Efficient Neural Network Analysis with Sum-of-Infeasibilities. TACAS (1) 2022: 143-163 - [e1]Omri Isac, Radoslav Ivanov, Guy Katz, Nina Narodytska, Laura Nenzi:
Software Verification and Formal Methods for ML-Enabled Autonomous Systems - 5th International Workshop, FoMLAS 2022, and 15th International Workshop, NSV 2022, Haifa, Israel, July 31 - August 1, and August 11, 2022, Proceedings. Lecture Notes in Computer Science 13466, Springer 2022, ISBN 978-3-031-21221-5 [contents] - [d1]Haoze Wu, Aleksandar Zeljic, Guy Katz, Clark W. Barrett:
Artifact for Paper Efficient Neural Network Analysis with Sum-of-Infeasibilities. Zenodo, 2022 - [i32]Matan Ostrovsky, Clark W. Barrett, Guy Katz:
An Abstraction-Refinement Approach to Verifying Convolutional Neural Networks. CoRR abs/2201.01978 (2022) - [i31]Guy Amir, Guy Katz, Michael Schapira:
Verification-Aided Deep Ensemble Selection. CoRR abs/2202.03898 (2022) - [i30]Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, Assaf Marron:
Scenario-Assisted Deep Reinforcement Learning. CoRR abs/2202.04337 (2022) - [i29]Haoze Wu, Aleksandar Zeljic, Guy Katz, Clark W. Barrett:
Efficient Neural Network Analysis with Sum-of-Infeasibilities. CoRR abs/2203.11201 (2022) - [i28]Guy Amir, Davide Corsi, Raz Yerushalmi, Luca Marzari, David Harel, Alessandro Farinelli, Guy Katz:
Verifying Learning-Based Robotic Navigation Systems. CoRR abs/2205.13536 (2022) - [i27]Omri Isac, Clark W. Barrett, Min Zhang, Guy Katz:
Neural Network Verification with Proof Production. CoRR abs/2206.00512 (2022) - [i26]Davide Corsi, Raz Yerushalmi, Guy Amir, Alessandro Farinelli, David Harel, Guy Katz:
Constrained Reinforcement Learning for Robotics via Scenario-Based Programming. CoRR abs/2206.09603 (2022) - [i25]Yizhak Yisrael Elboher, Elazar Cohen, Guy Katz:
Neural Network Verification using Residual Reasoning. CoRR abs/2208.03083 (2022) - [i24]Tom Zelazny, Haoze Wu, Clark W. Barrett, Guy Katz:
On Optimizing Back-Substitution Methods for Neural Network Verification. CoRR abs/2208.07669 (2022) - [i23]Elazar Cohen, Yizhak Yisrael Elboher, Clark W. Barrett, Guy Katz:
Tighter Abstract Queries in Neural Network Verification. CoRR abs/2210.12871 (2022) - [i22]Shahaf Bassan, Guy Katz:
Towards Formal Approximated Minimal Explanations of Neural Networks. CoRR abs/2210.13915 (2022) - [i21]Avriti Chauhan, Mohammad Afzal, Hrishikesh Karmarkar, Yizhak Yisrael Elboher, Kumar Madhukar, Guy Katz:
Efficiently Finding Adversarial Examples with DNN Preprocessing. CoRR abs/2211.08706 (2022) - [i20]Jiaxu Tian, Dapeng Zhi, Si Liu, Peixin Wang, Guy Katz, Min Zhang:
BBReach: Tight and Scalable Black-Box Reachability Analysis of Deep Reinforcement Learning Systems. CoRR abs/2211.11127 (2022) - [i19]Guy Amir, Ziv Freund, Guy Katz, Elad Mandelbaum, Idan Refaeli:
veriFIRE: Verifying an Industrial, Learning-Based Wildfire Detection System. CoRR abs/2212.03287 (2022) - 2021
- [c37]Ori Lahav, Guy Katz:
Pruning and Slicing Neural Networks using Formal Verification. FMCAD 2021: 1-10 - [c36]Guy Amir, Michael Schapira, Guy Katz:
Towards Scalable Verification of Deep Reinforcement Learning. FMCAD 2021: 193-203 - [c35]Guy Katz:
Towards Repairing Scenario-Based Models with Rich Events. MODELSWARD 2021: 362-372 - [c34]Tomer Eliyahu, Yafim Kazak, Guy Katz, Michael Schapira:
Verifying learning-augmented systems. SIGCOMM 2021: 305-318 - [c33]Guy Katz:
Invited Talk: Using SMT and Abstraction-Refinement for Neural Network Verification. SMT 2021: 1 - [c32]Guy Amir, Haoze Wu, Clark W. Barrett, Guy Katz:
An SMT-Based Approach for Verifying Binarized Neural Networks. TACAS (2) 2021: 203-222 - [i18]Guy Katz:
Towards Repairing Scenario-Based Models with Rich Events. CoRR abs/2101.03504 (2021) - [i17]Guy Amir, Michael Schapira, Guy Katz:
Towards Scalable Verification of RL-Driven Systems. CoRR abs/2105.11931 (2021) - [i16]Ori Lahav, Guy Katz:
Pruning and Slicing Neural Networks using Formal Verification. CoRR abs/2105.13649 (2021) - [i15]Idan Refaeli, Guy Katz:
Minimal Multi-Layer Modifications of Deep Neural Networks. CoRR abs/2110.09929 (2021) - [i14]Natan Levy, Guy Katz:
RoMA: a Method for Neural Network Robustness Measurement and Assessment. CoRR abs/2110.11088 (2021) - 2020
- [c31]Yuval Jacoby, Clark W. Barrett, Guy Katz:
Verifying Recurrent Neural Networks Using Invariant Inference. ATVA 2020: 57-74 - [c30]Yizhak Yisrael Elboher, Justin Gottschlich, Guy Katz:
An Abstraction-Based Framework for Neural Network Verification. CAV (1) 2020: 43-65 - [c29]Haoze Wu, Alex Ozdemir, Aleksandar Zeljic, Kyle Julian, Ahmed Irfan, Divya Gopinath, Sadjad Fouladi, Guy Katz, Corina S. Pasareanu, Clark W. Barrett:
Parallelization Techniques for Verifying Neural Networks. FMCAD 2020: 128-137 - [c28]Ben Goldberger, Guy Katz, Yossi Adi, Joseph Keshet:
Minimal Modifications of Deep Neural Networks using Verification. LPAR 2020: 260-278 - [c27]Guy Katz:
Guarded Deep Learning using Scenario-based Modeling. MODELSWARD 2020: 126-136 - [c26]Guy Katz:
Augmenting Deep Neural Networks with Scenario-Based Guard Rules. MODELSWARD (Revised Selected Papers) 2020: 147-172 - [c25]Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark W. Barrett, Guy Katz:
Simplifying Neural Networks Using Formal Verification. NFM 2020: 85-93 - [i13]Yuval Jacoby, Clark W. Barrett, Guy Katz:
Verifying Recurrent Neural Networks using Invariant Inference. CoRR abs/2004.02462 (2020) - [i12]Haoze Wu, Alex Ozdemir, Aleksandar Zeljic, Ahmed Irfan, Kyle Julian, Divya Gopinath, Sadjad Fouladi, Guy Katz, Corina S. Pasareanu, Clark W. Barrett:
Parallelization Techniques for Verifying Neural Networks. CoRR abs/2004.08440 (2020) - [i11]Guy Katz:
Guarded Deep Learning using Scenario-Based Modeling. CoRR abs/2006.03863 (2020) - [i10]Christopher A. Strong, Haoze Wu, Aleksandar Zeljic, Kyle D. Julian, Guy Katz, Clark W. Barrett, Mykel J. Kochenderfer:
Global Optimization of Objective Functions Represented by ReLU Networks. CoRR abs/2010.03258 (2020) - [i9]Guy Amir, Haoze Wu, Clark W. Barrett, Guy Katz:
An SMT-Based Approach for Verifying Binarized Neural Networks. CoRR abs/2011.02948 (2020)
2010 – 2019
- 2019
- [c24]Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljic, David L. Dill, Mykel J. Kochenderfer, Clark W. Barrett:
The Marabou Framework for Verification and Analysis of Deep Neural Networks. CAV (1) 2019: 443-452 - [c23]Guy Katz, Assaf Marron, Aviran Sadon, Gera Weiss:
On-the-Fly Construction of Composite Events in Scenario-Based Modeling using Constraint Solvers. MODELSWARD 2019: 141-154 - [c22]David Harel, Guy Katz, Assaf Marron, Aviran Sadon, Gera Weiss:
Executing Scenario-Based Specification with Dynamic Generation of Rich Events. MODELSWARD (Revised Selected Papers) 2019: 246-274 - [c21]Yafim Kazak, Clark W. Barrett, Guy Katz, Michael Schapira:
Verifying Deep-RL-Driven Systems. NetAI@SIGCOMM 2019: 83-89 - [i8]Guy Katz, Assaf Marron, Aviran Sadon, Gera Weiss:
On-the-Fly Construction of Composite Events in Scenario-Based Modeling using Constraint Solvers. CoRR abs/1909.00408 (2019) - [i7]Sumathi Gokulanathan, Alexander Feldsher, Adi Malca, Clark W. Barrett, Guy Katz:
Simplifying Neural Networks with the Marabou Verification Engine. CoRR abs/1910.12396 (2019) - [i6]Yizhak Yisrael Elboher, Justin Gottschlich, Guy Katz:
An Abstraction-Based Framework for Neural Network Verification. CoRR abs/1910.14574 (2019) - 2018
- [j5]David Harel, Guy Katz, Rami Marelly, Assaf Marron:
Wise Computing: Toward Endowing System Development with Proactive Wisdom. Computer 51(2): 14-26 (2018) - [c20]Divya Gopinath, Guy Katz, Corina S. Pasareanu, Clark W. Barrett:
DeepSafe: A Data-Driven Approach for Assessing Robustness of Neural Networks. ATVA 2018: 3-19 - [i5]Lindsey Kuper, Guy Katz, Justin Gottschlich, Kyle Julian, Clark W. Barrett, Mykel J. Kochenderfer:
Toward Scalable Verification for Safety-Critical Deep Networks. CoRR abs/1801.05950 (2018) - 2017
- [j4]Joel Greenyer, Daniel Gritzner, Timo Gutjahr, Florian König, Nils Glade, Assaf Marron, Guy Katz:
ScenarioTools - A tool suite for the scenario-based modeling and analysis of reactive systems. Sci. Comput. Program. 149: 15-27 (2017) - [c19]Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, Mykel J. Kochenderfer:
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. CAV (1) 2017: 97-117 - [c18]Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, Clark W. Barrett:
SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. CAV (2) 2017: 126-133 - [c17]Shlomi Steinberg, Joel Greenyer, Daniel Gritzner, David Harel, Guy Katz, Assaf Marron:
Distributing Scenario-based Models: A Replicate-and-Project Approach. MODELSWARD 2017: 182-195 - [c16]Shlomi Steinberg, Joel Greenyer, Daniel Gritzner, David Harel, Guy Katz, Assaf Marron:
Efficient Distributed Execution of Multi-component Scenario-Based Models. MODELSWARD (Revised Selected Papers) 2017: 449-483 - [c15]Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, Mykel J. Kochenderfer:
Towards Proving the Adversarial Robustness of Deep Neural Networks. FVAV@iFM 2017: 19-26 - [i4]Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, Mykel J. Kochenderfer:
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. CoRR abs/1702.01135 (2017) - [i3]Nicholas Carlini, Guy Katz, Clark W. Barrett, David L. Dill:
Ground-Truth Adversarial Examples. CoRR abs/1709.10207 (2017) - [i2]Divya Gopinath, Guy Katz, Corina S. Pasareanu, Clark W. Barrett:
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks. CoRR abs/1710.00486 (2017) - 2016
- [j3]David Harel, Guy Katz, Rami Marelly, Assaf Marron:
First Steps Towards a Wise Development Environment for Behavioral Models. Int. J. Inf. Syst. Model. Des. 7(3): 1-22 (2016) - [c14]Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds, Liana Hadarean:
Lazy proofs for DPLL(T)-based SMT solvers. FMCAD 2016: 93-100 - [c13]Joel Greenyer, Daniel Gritzner, Guy Katz, Assaf Marron:
Scenario-Based Modeling and Synthesis for Reactive Systems with Dynamic System Structure in ScenarioTools. D&P@MoDELS 2016: 16-23 - [c12]Assaf Marron, Brit Arnon, Achiya Elyasaf, Michal Gordon, Guy Katz, Hadas Lapid, Rami Marelly, Dana Sherman, Smadar Szekely, Gera Weiss, David Harel:
Six (Im)possible Things before Breakfast: Building-Blocks and Design-Principles for Wise Computing. D&P@MoDELS 2016: 94-100 - [c11]David Harel, Guy Katz, Rami Marelly, Assaf Marron:
An Initial Wise Development Environment for Behavioral Models. MODELSWARD 2016: 600-612 - [c10]Burak Ekici, Guy Katz, Chantal Keller, Alain Mebsout, Andrew J. Reynolds, Cesare Tinelli:
Extending SMTCoq, a Certified Checker for SMT (Extended Abstract). HaTT@IJCAR 2016: 21-29 - 2015
- [j2]David Harel, Amir Kantor, Guy Katz, Assaf Marron, Gera Weiss, Guy Wiener:
Towards behavioral programming in distributed architectures. Sci. Comput. Program. 98: 233-267 (2015) - [c9]David Harel, Guy Katz, Robby Lampert, Assaf Marron, Gera Weiss:
On the Succinctness of Idioms for Concurrent Programming. CONCUR 2015: 85-99 - [c8]Guy Katz, Clark W. Barrett, David Harel:
Theory-Aided Model Checking of Concurrent Transition Systems. FMCAD 2015: 81-88 - [c7]David Harel, Guy Katz, Assaf Marron, Gera Weiss:
The Effect of Concurrent Programming Idioms on Verification - A Position Paper. MODELSWARD 2015: 363-369 - [i1]David Harel, Guy Katz, Rami Marelly, Assaf Marron:
Wise Computing: Towards Endowing System Development with True Wisdom. CoRR abs/1501.05924 (2015) - 2014
- [j1]David Harel, Guy Katz, Assaf Marron, Gera Weiss:
Non-intrusive Repair of Safety and Liveness Violations in Reactive Programs. Trans. Comput. Collect. Intell. 16: 1-33 (2014) - [c6]David Harel, Guy Katz:
Scaling-Up Behavioral Programming: Steps from Basic Principles to Application Architectures. AGERE!@SPLASH 2014: 95-108 - 2013
- [c5]David Harel, Amir Kantor, Guy Katz, Assaf Marron, Lior Mizrahi, Gera Weiss:
On composing and proving the correctness of reactive behavior. EMSOFT 2013: 13:1-13:10 - [c4]David Harel, Amir Kantor, Guy Katz:
Relaxing Synchronization Constraints in Behavioral Programs. LPAR 2013: 355-372 - [c3]Guy Katz:
On Module-Based Abstraction and Repair of Behavioral Programs. LPAR 2013: 518-535 - 2012
- [c2]David Harel, Guy Katz, Assaf Marron, Gera Weiss:
Non-intrusive Repair of Reactive Programs. ICECCS 2012: 3-12 - 2011
- [c1]Aviram Dayan, Guy Katz, Naseem Biasdi, Lior Rokach, Bracha Shapira, Aykan Aydin, Roland Schwaiger, Radmila Fishel:
Recommenders benchmark framework. RecSys 2011: 353-354
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-15 20:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint