default search action
Fabian Khateb
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j90]Julia Nako, Costas Psychalinos, Fabian Khateb, Ahmed S. Elwakil:
Bilinear Double-Order Filter Designs and Application Examples. IEEE Access 12: 14040-14049 (2024) - [j89]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
Low-Voltage Mixed-Mode Analog Filter Using Multiple-Input Multiple-Output Operational Transconductance Amplifiers. IEEE Access 12: 51073-51085 (2024) - [j88]Fabian Khateb, Tomasz Kulej, Montree Kumngern, Pipat Prommee:
0.5-V High Linear Fully Differential Multiple-Input Bulk-Driven OTA With Effective Self-Embedded CMFB. IEEE Access 12: 58338-58348 (2024) - [j87]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
Low-Voltage Low-Power Differential Difference Current Conveyor Transconductance Amplifier and Its Application to a Versatile Analog Filter. IEEE Access 12: 92523-92535 (2024) - [j86]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
A Novel Multiple-Input Single-Output Current-Mode Shadow Filter and Shadow Oscillator Using Current-Controlled Current Conveyors. Circuits Syst. Signal Process. 43(9): 5438-5462 (2024) - [j85]Chaiya Tanaphatsiri, Fabian Khateb, Roman Sotner, Winai Jaikla:
Gain-Controllable Transadmittance-Mode First-Order Allpass Filters with Electronic Tune Using Single Active Element. J. Circuits Syst. Comput. 33(3) (2024) - [j84]Fabian Khateb, Montree Kumngern, Tomasz Kulej:
0.5-V 281-nW Versatile Mixed-Mode Filter Using Multiple-Input/Output Differential Difference Transconductance Amplifiers. Sensors 24(1): 32 (2024) - [j83]Montree Kumngern, Fabian Khateb, Tomasz Kulej, Martin Kyselak, Somkiat Lerkvaranyu, Boonying Knobnob:
Current-Mode Shadow Filter with Single-Input Multiple-Output Using Current-Controlled Current Conveyors with Controlled Current Gain. Sensors 24(2): 460 (2024) - [j82]Montree Kumngern, Fabian Khateb, Tomasz Kulej, Lukas Langhammer:
1 V Electronically Tunable Differential Difference Current Conveyors Using Multiple-Input Operational Transconductance Amplifiers. Sensors 24(5): 1558 (2024) - [j81]Tomasz Kulej, Fabian Khateb, Montree Kumngern:
0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing. Sensors 24(7): 2150 (2024) - [j80]Montree Kumngern, Fabian Khateb, Tomasz Kulej, Boonying Knobnob:
1 V Tunable High-Quality Universal Filter Using Multiple-Input Operational Transconductance Amplifiers. Sensors 24(10): 3013 (2024) - 2023
- [j79]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
0.5 V Universal Filter and Quadrature Oscillator Based on Multiple-Input DDTA. IEEE Access 11: 9957-9966 (2023) - [j78]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Rajeev Kumar Ranjan:
0.5 V Multiple-Input Multiple-Output Differential Difference Transconductance Amplifier and Its Applications to Shadow Filter and Oscillator. IEEE Access 11: 31212-31227 (2023) - [j77]Fabian Khateb, Montree Kumngern, Tomasz Kulej:
0.5-V Nano-Power Voltage-Mode First-Order Universal Filter Based on Multiple-Input OTA. IEEE Access 11: 49806-49818 (2023) - [j76]Winai Jaikla, Surasak Sangyaem, Piya Supavarasuwat, Fabian Khateb, Shahram Minaei, Tomasz Kulej, Peerawut Suwanjan:
Reconfigurable Voltage-Mode First-Order Multifunction Filter Employing Second-Generation Voltage Conveyor (VCII) With Complete Standard Functions and Electronically Controllable Modification. IEEE Access 11: 56152-56169 (2023) - [j75]Montree Kumngern, Tomasz Kulej, Fabian Khateb:
31.3 nW, 0.5 V Bulk-Driven OTA for Biosignal Processing. IEEE Access 11: 56516-56525 (2023) - [j74]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Viera Stopjaková, Costas Psychalinos:
0.3-V, 357.4-nW Voltage-Mode First-Order Analog Filter Using a Multiple-Input VDDDA. IEEE Access 11: 96636-96647 (2023) - [j73]Fabian Khateb, Montree Kumngern, Tomasz Kulej:
58-nW 0.5-V Mixed-Mode Universal Filter Using Multiple-Input Multiple-Output OTAs. IEEE Access 11: 130345-130357 (2023) - [j72]Tomasz Kulej, Montree Kumngern, Fabian Khateb, Daniel Arbet:
0.5 V Versatile Voltage- and Transconductance-Mode Analog Filter Using Differential Difference Transconductance Amplifier. Sensors 23(2): 688 (2023) - [j71]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
Shadow Filters Using Multiple-Input Differential Difference Transconductance Amplifiers. Sensors 23(3): 1526 (2023) - [j70]Sadaf Tasneem, Pankaj Kumar Sharma, Rajeev Kumar Ranjan, Fabian Khateb:
Electronically Tunable Memristor Emulator Implemented Using a Single Active Element and Its Application in Adaptive Learning. Sensors 23(3): 1620 (2023) - [j69]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Mohammad Yavari:
0.5-V Nano-Power Shadow Sinusoidal Oscillator Using Bulk-Driven Multiple-Input Operational Transconductance Amplifier. Sensors 23(4): 2146 (2023) - [j68]Montree Kumngern, Fabian Khateb, Tomasz Kulej, Pavel Steffan:
0.3-V Voltage-Mode Versatile First-Order Analog Filter Using Multiple-Input DDTAs. Sensors 23(13): 5945 (2023) - [j67]Meysam Akbari, Safwan Mawlood Hussein, Yasir Hashim, Fabian Khateb, Tomasz Kulej, Kea-Tiong Tang:
Implementation of a Multipath Fully Differential OTA in 0.18-μm CMOS Process. IEEE Trans. Very Large Scale Integr. Syst. 31(1): 147-151 (2023) - [j66]Meysam Akbari, Safwan Mawlood Hussein, Yasir Hashim, Fabian Khateb, Kea-Tiong Tang:
A Rail-to-Rail Transconductance Amplifier Based on Current Generator Circuits. IEEE Trans. Very Large Scale Integr. Syst. 31(10): 1624-1628 (2023) - 2022
- [j65]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
0.5 V Current-Mode Low-Pass Filter Based on Voltage Second Generation Current Conveyor for Bio-Sensor Applications. IEEE Access 10: 12201-12207 (2022) - [j64]Fabian Khateb, Pipat Prommee, Tomasz Kulej:
MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access 10: 14325-14338 (2022) - [j63]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Dalibor Biolek:
0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access 10: 43209-43220 (2022) - [j62]Montree Kumngern, Pichai Suksaibul, Fabian Khateb, Tomasz Kulej:
Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access 10: 68965-68980 (2022) - [j61]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Dalibor Biolek:
0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors 22(7): 2655 (2022) - [j60]Montree Kumngern, Pichai Suksaibul, Fabian Khateb, Tomasz Kulej:
1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors 22(9): 3535 (2022) - [j59]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Meysam Akbari, Viera Stopjaková:
0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing. Sensors 22(22): 8619 (2022) - [j58]Tomasz Kulej, Fabian Khateb, Daniel Arbet, Viera Stopjaková:
A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 69(4): 2046-2050 (2022) - [j57]Fabian Khateb, Tomasz Kulej, Meysam Akbari, Kea-Tiong Tang:
A 0.5-V Multiple-Input Bulk-Driven OTA in 0.18-μm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 30(11): 1739-1747 (2022) - 2021
- [j56]Pipat Prommee, Khunanon Karawanich, Fabian Khateb, Tomasz Kulej:
Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access 9: 32582-32590 (2021) - [j55]Montree Kumngern, Fabian Khateb, Tomasz Kulej, Costas Psychalinos:
Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access 9: 56253-56263 (2021) - [j54]Niranjan Raj, Rajeev Kumar Ranjan, Fabian Khateb, Montree Kumngern:
Mem-Elements Emulator Design With Experimental Validation and Its Application. IEEE Access 9: 69860-69875 (2021) - [j53]Fabian Khateb, Tomasz Kulej, Meysam Akbari, Montree Kumngern:
0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access 9: 103784-103794 (2021) - [j52]Winai Jaikla, Fabian Khateb, Tomasz Kulej, Koson Pitaksuttayaprot:
Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors 21(5): 1683 (2021) - [j51]Winai Jaikla, Unchittha Buakhong, Surapong Siripongdee, Fabian Khateb, Roman Sotner, Phamorn Silapan, Peerawut Suwanjan, Amornchai Chaichana:
Single Commercially Available IC-Based Electronically Controllable Voltage-Mode First-Order Multifunction Filter with Complete Standard Functions and Low Output Impedance. Sensors 21(21): 7376 (2021) - 2020
- [j50]Tomasz Kulej, Fabian Khateb:
A 0.3-V 98-dB Rail-to-Rail OTA in $0.18~\mu$ m CMOS. IEEE Access 8: 27459-27467 (2020) - [j49]Tomasz Kulej, Fabian Khateb, Montree Kumngern:
0.3-V Nanopower Biopotential Low-Pass Filter. IEEE Access 8: 119586-119593 (2020) - [j48]Pankaj Kumar Sharma, Rajeev Kumar Ranjan, Fabian Khateb, Montree Kumngern:
Charged Controlled Mem-Element Emulator and Its Application in a Chaotic System. IEEE Access 8: 171397-171407 (2020) - [j47]Winai Jaikla, Fabian Khateb, Montree Kumngern, Tomasz Kulej, Rajeev Kumar Ranjan, Peerawut Suwanjan:
0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access 8: 187832-187839 (2020) - [j46]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
0.3 V Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits Syst. Signal Process. 39(6): 3189-3205 (2020) - [j45]Fabian Khateb, Tomasz Kulej, Luis Henrique de Carvalho Ferreira, Antonio J. López-Martín:
Guest Editorial: Special issue on low voltage low power integrated circuits and systems. Microelectron. J. 95 (2020) - [j44]Montree Kumngern, Nattharinee Aupithak, Fabian Khateb, Tomasz Kulej:
0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors 20(24): 7343 (2020) - [j43]Tomasz Kulej, Fabian Khateb:
A Compact 0.3-V Class AB Bulk-Driven OTA. IEEE Trans. Very Large Scale Integr. Syst. 28(1): 224-232 (2020) - [j42]Niranjan Raj, Rajeev Kumar Ranjan, Fabian Khateb:
Flux-Controlled Memristor Emulator and Its Experimental Results. IEEE Trans. Very Large Scale Integr. Syst. 28(4): 1050-1061 (2020) - [c9]Khanidtha Thinthaworn, Winai Jaikla, Peerawut Suwanjan, Suchin Adhan, Nattapol Srichaiya, Adisorn Kwawsibsame, Fabian Khateb:
A Compact Electronically Controllable Biquad Filter Synthesizing from Parallel Passive RLC Configuration. SICE 2020: 903-907
2010 – 2019
- 2019
- [j41]Fabian Khateb, Tomasz Kulej, Montree Kumngern:
0.3V Bulk-Driven Current Conveyor. IEEE Access 7: 65122-65128 (2019) - [j40]Fabian Khateb, Tomasz Kulej, Meysam Akbari, Pavel Steffan:
0.3-V Bulk-Driven Nanopower OTA-C Integrator in 0.18 µm CMOS. Circuits Syst. Signal Process. 38(3): 1333-1341 (2019) - [j39]Fabian Khateb, Tomasz Kulej, Montree Kumngern, Costas Psychalinos:
Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits Syst. Signal Process. 38(6): 2829-2845 (2019) - [j38]Spyridon Vlassis, George Souliotis, Fabian Khateb, Tomasz Kulej:
A 0.5-V Bulk-Driven Active Voltage Attenuator. Circuits Syst. Signal Process. 38(12): 5883-5895 (2019) - [j37]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Costas Psychalinos:
0.5 V Universal Filter Based on Multiple-Input FDDAs. Circuits Syst. Signal Process. 38(12): 5896-5907 (2019) - [j36]Rajeev Kumar Ranjan, Surendra Sagar, Subrato Roushan, Bharti Kumari, Nishtha Rani, Fabian Khateb:
High-frequency floating memristor emulator and its experimental results. IET Circuits Devices Syst. 13(3): 292-302 (2019) - [j35]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
0.5 V bulk-driven CMOS fully differential current feedback operational amplifier. IET Circuits Devices Syst. 13(3): 314-320 (2019) - [j34]Montree Kumngern, Pichai Suksaibul, Fabian Khateb:
Four-Input One-Output Voltage-Mode Universal Filter Using Simple OTAs. J. Circuits Syst. Comput. 28(5): 1950078:1-1950078:20 (2019) - [j33]Rajeev Kumar Ranjan, Pankaj Kumar Sharma, Surendra Sagar, Niranjan Raj, Bharti Kumari, Fabian Khateb:
Memristor Emulator Circuit Using Multiple-Output OTA and Its Experimental Results. J. Circuits Syst. Comput. 28(10): 1950166:1-1950166:28 (2019) - [j32]Montree Kumngern, Thanat Nonthaputha, Fabian Khateb:
Arbitrary Waveform Generators Using Current-Controlled Current Conveyor Transconductance Amplifier and Current Conveyor Analog Switches. J. Circuits Syst. Comput. 28(11): 1950179:1-1950179:20 (2019) - [j31]Spyridon Vlassis, Fabian Khateb, George Souliotis:
An On-Chip Linear, Squaring, Cubic and Exponential Analog Function Generator. IEEE Trans. Circuits Syst. I Regul. Pap. 66-I(1): 94-104 (2019) - [j30]Fabian Khateb, Tomasz Kulej:
Design and Implementation of a 0.3-V Differential Difference Amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 66-I(2): 513-523 (2019) - [j29]Tomasz Kulej, Fabian Khateb, Luis Henrique de Carvalho Ferreira:
A 0.3-V 37-nW 53-dB SNDR Asynchronous Delta-Sigma Modulator in 0.18-µm CMOS. IEEE Trans. Very Large Scale Integr. Syst. 27(2): 316-325 (2019) - 2018
- [j28]Fabian Khateb, Montree Kumngern, Tomasz Kulej, Vilem Kledrowetz:
Low-voltage fully differential difference transconductance amplifier. IET Circuits Devices Syst. 12(1): 73-81 (2018) - [j27]Montree Kumngern, Thanat Nonthaputha, Fabian Khateb:
Low-power sample and hold circuits using current conveyor analogue switches. IET Circuits Devices Syst. 12(4): 397-402 (2018) - [j26]Tomasz Kulej, Fabian Khateb:
Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS. Int. J. Circuit Theory Appl. 46(6): 1129-1143 (2018) - [j25]Meysam Akbari, Omid Hashemipour, Fabian Khateb, Farshad Moradi:
An energy-efficient DAC switching algorithm based on charge recycling method for SAR ADCs. Microelectron. J. 82: 29-35 (2018) - [c8]Montree Kumngern, Usa Torteanchai, Sathian Yutthanaboon, Fabian Khateb:
Sub-Volt Bulk-Driven Transconductance Amplifier and Filter Application. APCCAS 2018: 1-4 - 2017
- [j24]Fabian Khateb, Tomasz Kulej, Spyridon Vlassis:
Extremely Low-Voltage Bulk-Driven Tunable Transconductor. Circuits Syst. Signal Process. 36(2): 511-524 (2017) - [j23]Fabian Khateb, Spyridon Vlassis, Tomasz Kulej:
Guest Editorial: Low-Voltage Integrated Circuits and Systems. Circuits Syst. Signal Process. 36(12): 4769-4773 (2017) - [j22]Pipat Prommee, Narongsak Manositthichai, Fabian Khateb:
Active-only variable-gain low-pass filter for dual-mode multiphase sinusoidal oscillator application. Turkish J. Electr. Eng. Comput. Sci. 25: 4326-4340 (2017) - [j21]Montree Kumngern, Fabian Khateb, Tomasz Kulej:
Fully-balanced four-terminal floating nullor for ultra-low voltage analogue filter design. IET Circuits Devices Syst. 11(2): 173-182 (2017) - [j20]Fabian Khateb, Winai Jaikla, Tomasz Kulej, Montree Kumngern, David Kubánek:
Shadow filters based on DDCC. IET Circuits Devices Syst. 11(6): 631-637 (2017) - [j19]Tomasz Kulej, Fabian Khateb:
0.3-V bulk-driven programmable gain amplifier in 0.18-µm CMOS. Int. J. Circuit Theory Appl. 45(8): 1077-1094 (2017) - [j18]Fabian Khateb, Tomasz Kulej, Montree Kumngern, Vilem Kledrowetz:
Low-Voltage Diode-Less Rectifier Based on Fully Differential Difference Transconductance Amplifier. J. Circuits Syst. Comput. 26(11): 1750172:1-1750172:8 (2017) - [c7]Montree Kumngern, Usa Torteanchai, Fabian Khateb:
0.5-V bulk-driven quasi-floating gate transconductance amplifier. ICECS 2017: 152-155 - 2016
- [j17]Fabian Khateb, Montree Kumngern, Tomasz Kulej:
1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications. Circuits Syst. Signal Process. 35(5): 1507-1529 (2016) - [j16]David Kubánek, Fabian Khateb, Georgia Tsirimokou, Costas Psychalinos:
Practical Design and Evaluation of Fractional-Order Oscillator Using Differential Voltage Current Conveyors. Circuits Syst. Signal Process. 35(6): 2003-2016 (2016) - [j15]Montree Kumngern, Fabian Khateb:
0.5 V fully differential current conveyor using bulk-driven quasi-floating-gate technique. IET Circuits Devices Syst. 10(1): 78-86 (2016) - [j14]Fabian Khateb, David Kubánek, Georgia Tsirimokou, Costas Psychalinos:
Fractional-order filters based on low-voltage DDCCs. Microelectron. J. 50: 50-59 (2016) - [c6]Punnavich Phatsornsiri, Montree Kumngern, Fabian Khateb:
0.5-V fully differential allpass section. ISPACS 2016: 1-4 - 2015
- [j13]Fabian Khateb, Spyridon Vlassis, Montree Kumngern, Costas Psychalinos, Tomasz Kulej, Radimír Vrba, Lukas Fujcik:
1 V Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers. Circuits Syst. Signal Process. 34(7): 2077-2089 (2015) - [j12]Fabian Khateb, Montree Kumngern, Spyridon Vlassis, Costas Psychalinos, Tomasz Kulej:
Sub-Volt Fully Balanced Differential Difference Amplifier. J. Circuits Syst. Comput. 24(1): 1550005:1-1550005:18 (2015) - [j11]Tomasz Kulej, Fabian Khateb:
0.4-V bulk-driven differential-difference amplifier. Microelectron. J. 46(5): 362-369 (2015) - [c5]Montree Kumngern, Fabian Khateb:
Fully differential difference transconductance amplifier using FG-MOS transistors. ISPACS 2015: 337-341 - [c4]Fabian Khateb, Salma Bay Abo Dabbous, Montree Kumngern, Tomasz Kulej:
Novel current controlled differential-input buffered output active element and its application in all-pass filter. TSP 2015: 335-338 - 2014
- [j10]Fabian Khateb, Montree Kumngern, Spyridon Vlassis, Costas Psychalinos:
Differential Difference Current Conveyor Using Bulk-Driven Technique for Ultra-Low-Voltage Applications. Circuits Syst. Signal Process. 33(1): 159-176 (2014) - 2013
- [j9]Fabian Khateb, Firat Kaçar, Nabhan Khatib, David Kubánek:
High-Precision Differential-Input Buffered and External Transconductance Amplifier for Low-Voltage Low-Power Applications. Circuits Syst. Signal Process. 32(2): 453-476 (2013) - [j8]Fabian Khateb, Nabhan Khatib, Pipat Prommee, Winai Jaikla, Lukas Fujcik:
Ultra-Low voltage Tunable transconductor Based on Bulk-Driven quasi-Floating-gate Technique. J. Circuits Syst. Comput. 22(8) (2013) - [j7]Fabian Khateb, Spyridon Vlassis:
Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44(8): 642-648 (2013) - [j6]Fabian Khateb, Winai Jaikla, Montree Kumngern, Pipat Prommee:
Comparative study of sub-volt differential difference current conveyors. Microelectron. J. 44(12): 1278-1284 (2013) - [c3]Michal Pavlik, Vilem Kledrowetz, Jiri Haze, Marian Pristach, Roman Prokop, Lukas Fujcik, Fabian Khateb:
SC ΣΔ converter for vibration sensor processing system. TSP 2013: 392-396 - [c2]David Kubánek, Fabian Khateb, Kamil Vrba:
Current-controlled square/triangular wave generator with MO-CCDVCC. TSP 2013: 444-448 - 2012
- [j5]Fabian Khateb, Nabhan Khatib, David Kubánek:
Novel Ultra-Low-Power Class AB CCII+ Based on Floating-Gate Folded Cascode OTA. Circuits Syst. Signal Process. 31(2): 447-464 (2012) - [j4]Fabian Khateb, Pavel Horsky, Lukás Fujcik, Radimír Vrba, Michal Pavlík:
Comment on "High performance low-voltage QFG-based DVCC and a novel fully differential SC integrator based on it". IEICE Electron. Express 9(18): 1492-1493 (2012) - 2011
- [j3]Fabian Khateb, Dalibor Biolek:
Bulk-Driven Current Differencing Transconductance Amplifier. Circuits Syst. Signal Process. 30(5): 1071-1089 (2011) - [j2]Fabian Khateb, Nabhan Khatib, David Kubánek:
Novel low-voltage low-power high-precision CCII± based on bulk-driven folded cascode OTA. Microelectron. J. 42(5): 622-631 (2011) - [j1]Fabian Khateb, Nabhan Khatib, Jaroslav Koton:
Novel low-voltage ultra-low-power DVCC based on floating-gate folded cascode OTA. Microelectron. J. 42(8): 1010-1017 (2011) - 2010
- [c1]Fabian Khateb, Dalibor Biolek, Nabhan Khatib, Jiri Vavra:
Utilizing the Bulk-driven technique in analog circuit design. DDECS 2010: 16-19
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-10 01:13 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint