default search action
Jing-Mei Qiu
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j55]Jiajie Chen, Joseph Nakao, Jing-Mei Qiu, Yang Yang:
A High-Order Eulerian-Lagrangian Runge-Kutta Finite Volume (EL-RK-FV) Method for Scalar Nonlinear Conservation Laws. J. Sci. Comput. 102(1): 12 (2025) - 2024
- [j54]Hamad El Kahza, William T. Taitano, Jing-Mei Qiu, Luis Chacón:
Krylov-based adaptive-rank implicit time integrators for stiff problems with application to nonlinear Fokker-Planck kinetic models. J. Comput. Phys. 518: 113332 (2024) - [j53]Xue Hong, Jing-Mei Qiu:
A Conservative Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Method for Linear Hyperbolic System with Large Time Stepping. J. Sci. Comput. 98(3): 70 (2024) - [j52]Nanyi Zheng, Xiaofeng Cai, Jing-Mei Qiu, Jianxian Qiu:
Fourth-Order Conservative Non-splitting Semi-Lagrangian Hermite WENO Schemes for Kinetic and Fluid Simulations. J. Sci. Comput. 99(3): 70 (2024) - [j51]Wei Guo, Jing-Mei Qiu:
A Local Macroscopic Conservative (LoMaC) Low Rank Tensor Method for the Vlasov Dynamics. J. Sci. Comput. 101(3): 61 (2024) - [j50]Wei Guo, Jing-Mei Qiu:
A Conservative Low Rank Tensor Method for the Vlasov Dynamics. SIAM J. Sci. Comput. 46(1): 232- (2024) - [i23]Hamad El Kahza, William T. Taitano, Jing-Mei Qiu, Luis Chacón:
Krylov-based Adaptive-Rank Implicit Time Integrators for Stiff Problems with Application to Nonlinear Fokker-Planck Kinetic Models. CoRR abs/2404.03119 (2024) - [i22]Jiajie Chen, Joseph Nakao, Jing-Mei Qiu, Yang Yang:
A high-order Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for scalar nonlinear conservation laws. CoRR abs/2405.09835 (2024) - [i21]Nanyi Zheng, Xiaofeng Cai, Jing-Mei Qiu, Jianxian Qiu:
Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations. CoRR abs/2406.01479 (2024) - [i20]William A. Sands, Wei Guo, Jing-Mei Qiu, Tao Xiong:
High-order Adaptive Rank Integrators for Multi-scale Linear Kinetic Transport Equations in the Hierarchical Tucker Format. CoRR abs/2406.19479 (2024) - [i19]Tianyi Shi, Daniel Hayes, Jing-Mei Qiu:
Distributed memory parallel adaptive tensor-train cross approximation. CoRR abs/2407.11290 (2024) - [i18]Hamad El Kahza, Jing-Mei Qiu, Luis Chacón, William T. Taitano:
Sylvester-Preconditioned Adaptive-Rank Implicit Time Integrators for Advection-Diffusion Equations with Inhomogeneous Coefficients. CoRR abs/2410.19662 (2024) - 2023
- [j49]Mingchang Ding, Jing-Mei Qiu, Ruiwen Shu:
Accuracy and Stability Analysis of the Semi-Lagrangian Method for Stiff Hyperbolic Relaxation Systems and Kinetic BGK Model. Multiscale Model. Simul. 21(1): 143-167 (2023) - [c1]Aidan Hamilton, Jing-Mei Qiu, Hong Zhang:
Scalable Riemann Solvers with the Discontinuous Galerkin Method for Hyperbolic Network Simulation. PASC 2023: 22:1-22:10 - [i17]Yang Yang, Jiajie Chen, Jing-Mei Qiu:
Stability analysis of the Eulerian-Lagrangian finite volume methods for nonlinear hyperbolic equations in one space dimension. CoRR abs/2302.07291 (2023) - [i16]Joseph Nakao, Jing-Mei Qiu, Lukas Einkemmer:
Reduced Augmentation Implicit Low-rank (RAIL) integrators for advection-diffusion and Fokker-Planck models. CoRR abs/2311.15143 (2023) - 2022
- [j48]Wei Guo, Jing-Mei Qiu:
A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps. J. Comput. Phys. 458: 111089 (2022) - [j47]Xue Hong, Jing-Mei Qiu:
A generalized Eulerian-Lagrangian discontinuous Galerkin method for transport problems. J. Comput. Phys. 464: 111160 (2022) - [j46]Joseph Nakao, Jiajie Chen, Jing-Mei Qiu:
An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations. J. Comput. Phys. 470: 111589 (2022) - [j45]Sebastiano Boscarino, Jing-Mei Qiu, Giovanni Russo, Tao Xiong:
High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics. SIAM J. Sci. Comput. 44(2): 368- (2022) - [j44]Xiaofeng Cai, Jing-Mei Qiu:
Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Method for Transport Simulations on Unstructured Meshes. SIAM J. Sci. Comput. 44(4): 2037- (2022) - [i15]Wei Guo, Jing-Mei Qiu:
A conservative low rank tensor method for the Vlasov dynamics. CoRR abs/2201.10397 (2022) - [i14]Joseph Nakao, Jiajie Chen, Jing-Mei Qiu:
An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations. CoRR abs/2204.03682 (2022) - [i13]Wei Guo, Jing-Mei Qiu:
A Local Macroscopic Conservative (LoMaC) low rank tensor method for the Vlasov dynamics. CoRR abs/2207.00518 (2022) - [i12]Xue Hong, Jing-Mei Qiu:
A mass conservative Eulerian-Lagrangian Runge-Kutta discontinuous Galerkin method for wave equations with large time stepping. CoRR abs/2207.13736 (2022) - [i11]Nanyi Zheng, Xiaofeng Cai, Jing-Mei Qiu, Jianxian Qiu:
Fourth-order conservative non-splitting semi-Lagrangian Hermite WENO schemes for kinetic and fluid simulations. CoRR abs/2208.03890 (2022) - [i10]Wei Guo, Jannatul Ferdous Ema, Jing-Mei Qiu:
A Local Macroscopic Conservative (LoMaC) low rank tensor method with the discontinuous Galerkin method for the Vlasov dynamics. CoRR abs/2210.07208 (2022) - 2021
- [j43]Maria Laura Delle Monache, Karen Chi, Yong Chen, Paola Goatin, Ke Han, Jing-Mei Qiu, Benedetto Piccoli:
A Three-Phase Fundamental Diagram from Three-Dimensional Traffic Data. Axioms 10(1): 17 (2021) - [j42]Xiaofeng Cai, Sebastiano Boscarino, Jing-Mei Qiu:
High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics. J. Comput. Phys. 427: 110036 (2021) - [j41]Xiaofeng Cai, Jing-Mei Qiu, Yang Yang:
An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics. J. Comput. Phys. 439: 110392 (2021) - [j40]Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, Fengyan Li:
Stability-enhanced AP IMEX1-LDG Method: Energy-based Stability and Rigorous AP Property. SIAM J. Numer. Anal. 59(2): 925-954 (2021) - [j39]Nanyi Zheng, Xiaofeng Cai, Jing-Mei Qiu, Jianxian Qiu:
A Conservative Semi-Lagrangian Hybrid Hermite WENO Scheme for Linear Transport Equations and the Nonlinear Vlasov-Poisson System. SIAM J. Sci. Comput. 43(5): A3580-A3606 (2021) - [i9]Xue Hong, Jing-Mei Qiu:
A Generalized Eulerian-Lagrangian Discontinuous Galerkin Method for Transport Problems. CoRR abs/2102.11383 (2021) - [i8]Mingchang Ding, Jing-Mei Qiu, Ruiwen Shu:
Semi-Lagrangian nodal discontinuous Galerkin method for the BGK Model. CoRR abs/2105.02421 (2021) - [i7]Mingchang Ding, Jing-Mei Qiu, Ruiwen Shu:
Accuracy and stability analysis of the Semi-Lagrangian method for stiff hyperbolic relaxation systems and kinetic BGK model. CoRR abs/2105.02974 (2021) - [i6]Sebastiano Boscarino, Jing-Mei Qiu, Giovanni Russo, Tao Xiong:
High Order Semi-implicit WENO Schemes for All Mach Full Euler System of Gas Dynamics. CoRR abs/2106.02506 (2021) - [i5]Wei Guo, Jing-Mei Qiu:
A Low Rank Tensor Representation of Linear Transport and Nonlinear Vlasov Solutions and Their Associated Flow Maps. CoRR abs/2106.08834 (2021) - 2020
- [j38]Mingchang Ding, Xiaofeng Cai, Wei Guo, Jing-Mei Qiu:
A semi-Lagrangian discontinuous Galerkin (DG) - local DG method for solving convection-diffusion equations. J. Comput. Phys. 409: 109295 (2020) - [j37]Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, Fengyan Li:
Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling. J. Comput. Phys. 415: 109485 (2020) - [j36]Yang Yang, Xiaofeng Cai, Jing-Mei Qiu:
Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension. Math. Comput. 89(325): 2113-2139 (2020) - [i4]Xiaofeng Cai, Jing-Mei Qiu, Yang Yang:
An Eulerian-Lagrangian discontinuous Galerkin method for transport problems and its application to nonlinear dynamics. CoRR abs/2002.02930 (2020) - [i3]Zhichao Peng, Yingda Cheng, Jing-Mei Qiu, Fengyan Li:
Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property. CoRR abs/2005.05454 (2020)
2010 – 2019
- 2019
- [j35]Sebastiano Boscarino, Jing-Mei Qiu, Giovanni Russo, Tao Xiong:
A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system. J. Comput. Phys. 392: 594-618 (2019) - [j34]Xiaofeng Cai, Wei Guo, Jing-Mei Qiu:
A High Order Semi-Lagrangian Discontinuous Galerkin Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model Without Operator Splitting. J. Sci. Comput. 79(2): 1111-1134 (2019) - [j33]Tao Xiong, Giovanni Russo, Jing-Mei Qiu:
Conservative Multi-dimensional Semi-Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic and Fluid Simulations. J. Sci. Comput. 79(2): 1241-1270 (2019) - [i2]Mingchang Ding, Xiaofeng Cai, Wei Guo, Jing-Mei Qiu:
A semi-Lagrangian discontinuous Galerkin (DG) - local DG method for solving convection-diffusion-reaction equations. CoRR abs/1907.06117 (2019) - [i1]Xiaofeng Cai, Sebastiano Boscarino, Jing-Mei Qiu:
High Order Semi-Lagrangian Discontinuous Galerkin Method Coupled with Runge-Kutta Exponential Integrators for Nonlinear Vlasov Dynamics. CoRR abs/1911.12229 (2019) - 2018
- [j32]Xiaofeng Cai, Wei Guo, Jing-Mei Qiu:
A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting. J. Comput. Phys. 354: 529-551 (2018) - [j31]Xiaofeng Cai, Jianxian Qiu, Jing-Mei Qiu:
Finite Volume HWENO Schemes for Nonconvex Conservation Laws. J. Sci. Comput. 75(1): 65-82 (2018) - [j30]Tao Xiong, Giovanni Russo, Jing-Mei Qiu:
High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation and the Guiding-Center Vlasov Equation. J. Sci. Comput. 77(1): 263-282 (2018) - [j29]Sebastiano Boscarino, Jing-Mei Qiu, Giovanni Russo:
Implicit-Explicit Integral Deferred Correction Methods for Stiff Problems. SIAM J. Sci. Comput. 40(2) (2018) - 2017
- [j28]Tao Xiong, Jing-Mei Qiu:
A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation. J. Comput. Phys. 336: 164-191 (2017) - [j27]Jing-Mei Qiu, Giovanni Russo:
A High Order Multi-Dimensional Characteristic Tracing Strategy for the Vlasov-Poisson System. J. Sci. Comput. 71(1): 414-434 (2017) - [j26]Xiaofeng Cai, Wei Guo, Jing-Mei Qiu:
A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations. J. Sci. Comput. 73(2-3): 514-542 (2017) - [j25]Hongqiang Zhu, Jianxian Qiu, Jing-Mei Qiu:
An h-Adaptive RKDG Method for the Two-Dimensional Incompressible Euler Equations and the Guiding Center Vlasov Model. J. Sci. Comput. 73(2-3): 1316-1337 (2017) - 2016
- [j24]Xiaofeng Cai, Jianxian Qiu, Jing-Mei Qiu:
A conservative semi-Lagrangian HWENO method for the Vlasov equation. J. Comput. Phys. 323: 95-114 (2016) - [j23]Pei Yang, Tao Xiong, Jing-Mei Qiu, Zhengfu Xu:
High Order Maximum Principle Preserving Finite Volume Method for Convection Dominated Problems. J. Sci. Comput. 67(2): 795-820 (2016) - [j22]Tao Xiong, Jing-Mei Qiu, Zhengfu Xu:
Parametrized Positivity Preserving Flux Limiters for the High Order Finite Difference WENO Scheme Solving Compressible Euler Equations. J. Sci. Comput. 67(3): 1066-1088 (2016) - [j21]Maya Briani, Benedetto Piccoli, Jing-Mei Qiu:
Notes on RKDG Methods for Shallow-Water Equations in Canal Networks. J. Sci. Comput. 68(3): 1101-1123 (2016) - [j20]Hongqiang Zhu, Jianxian Qiu, Jing-Mei Qiu:
An h-Adaptive RKDG Method for the Vlasov-Poisson System. J. Sci. Comput. 69(3): 1346-1365 (2016) - 2015
- [j19]Juhi Jang, Fengyan Li, Jing-Mei Qiu, Tao Xiong:
High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling. J. Comput. Phys. 281: 199-224 (2015) - [j18]Tao Xiong, Juhi Jang, Fengyan Li, Jing-Mei Qiu:
High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation. J. Comput. Phys. 284: 70-94 (2015) - [j17]Suncica Canic, Benedetto Piccoli, Jing-Mei Qiu, Tan Ren:
Runge-Kutta Discontinuous Galerkin Method for Traffic Flow Model on Networks. J. Sci. Comput. 63(1): 233-255 (2015) - [j16]Wei Guo, Jing-Mei Qiu, Jianxian Qiu:
A New Lax-Wendroff Discontinuous Galerkin Method with Superconvergence. J. Sci. Comput. 65(1): 299-326 (2015) - [j15]Tao Xiong, Jing-Mei Qiu, Zhengfu Xu:
High Order Maximum-Principle-Preserving Discontinuous Galerkin Method for Convection-Diffusion Equations. SIAM J. Sci. Comput. 37(2) (2015) - 2014
- [j14]Andrew J. Christlieb, Wei Guo, Maureen Morton, Jing-Mei Qiu:
A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267: 7-27 (2014) - [j13]Tao Xiong, Jing-Mei Qiu, Zhengfu Xu, Andrew J. Christlieb:
High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation. J. Comput. Phys. 273: 618-639 (2014) - [j12]Tan Ren, Jun Hu, Tao Xiong, Jing-Mei Qiu:
Runge-Kutta central discontinuous Galerkin BGK method for the Navier-Stokes equations. J. Comput. Phys. 274: 592-610 (2014) - [j11]Juhi Jang, Fengyan Li, Jing-Mei Qiu, Tao Xiong:
Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling. SIAM J. Numer. Anal. 52(4): 2048-2072 (2014) - 2013
- [j10]Wei Guo, Jing-Mei Qiu:
Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation. J. Comput. Phys. 234: 108-132 (2013) - [j9]Wei Guo, Xinghui Zhong, Jing-Mei Qiu:
Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235: 458-485 (2013) - [j8]Tao Xiong, Jing-Mei Qiu, Zhengfu Xu:
A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. J. Comput. Phys. 252: 310-331 (2013) - 2011
- [j7]Jing-Mei Qiu, Chi-Wang Shu:
Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow. J. Comput. Phys. 230(4): 863-889 (2011) - [j6]Chaopeng Shen, Jing-Mei Qiu, Andrew J. Christlieb:
Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations. J. Comput. Phys. 230(10): 3780-3802 (2011) - [j5]Jing-Mei Qiu, Chi-Wang Shu:
Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system. J. Comput. Phys. 230(23): 8386-8409 (2011) - 2010
- [j4]Jing-Mei Qiu, Andrew J. Christlieb:
A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229(4): 1130-1149 (2010) - [j3]Andrew J. Christlieb, Benjamin W. Ong, Jing-Mei Qiu:
Integral deferred correction methods constructed with high order Runge-Kutta integrators. Math. Comput. 79(270): 761-783 (2010)
2000 – 2009
- 2008
- [j2]Jing-Mei Qiu, Chi-Wang Shu:
Convergence of Godunov-Type Schemes for Scalar Conservation Laws under Large Time Steps. SIAM J. Numer. Anal. 46(5): 2211-2237 (2008) - [j1]Jing-Mei Qiu, Chi-Wang Shu:
Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws. SIAM J. Sci. Comput. 31(1): 584-607 (2008)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 19:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint