default search action
Florence d'Alché-Buc
Person information
- affiliation: LTCI, Télécom Paris, Institut Polytechnique de Paris, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j24]Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Gaël Richard, Florence d'Alché-Buc:
Tackling Interpretability in Audio Classification Networks With Non-negative Matrix Factorization. IEEE ACM Trans. Audio Speech Lang. Process. 32: 1392-1405 (2024) - [j23]Guillaume Staerman, Pavlo Mozharovskyi, Pierre Colombo, Stéphan Clémençon, Florence d'Alché-Buc:
A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions. Trans. Mach. Learn. Res. 2024 (2024) - [j22]Junjie Yang, Matthieu Labeau, Florence d'Alché-Buc:
Exploiting Edge Features in Graph-based Learning with Fused Network Gromov-Wasserstein Distance. Trans. Mach. Learn. Res. 2024 (2024) - [c42]Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc:
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels. AISTATS 2024: 109-117 - [c41]Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d'Alché-Buc:
Deep Sketched Output Kernel Regression for Structured Prediction. ECML/PKDD (3) 2024: 93-110 - [i33]Paul Krzakala, Junjie Yang, Rémi Flamary, Florence d'Alché-Buc, Charlotte Laclau, Matthieu Labeau:
End-to-end Supervised Prediction of Arbitrary-size Graphs with Partially-Masked Fused Gromov-Wasserstein Matching. CoRR abs/2402.12269 (2024) - [i32]Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d'Alché-Buc:
Deep Sketched Output Kernel Regression for Structured Prediction. CoRR abs/2406.09253 (2024) - [i31]Jayneel Parekh, Quentin Bouniot, Pavlo Mozharovskyi, Alasdair Newson, Florence d'Alché-Buc:
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models. CoRR abs/2407.01331 (2024) - 2023
- [j21]Tamim El Ahmad, Pierre Laforgue, Florence d'Alché-Buc:
Fast Kernel Methods for Generic Lipschitz Losses via p-Sparsified Sketches. Trans. Mach. Learn. Res. 2023 (2023) - [i30]Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc:
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels. CoRR abs/2302.10128 (2023) - [i29]Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Gaël Richard, Florence d'Alché-Buc:
Tackling Interpretability in Audio Classification Networks with Non-negative Matrix Factorization. CoRR abs/2305.07132 (2023) - [i28]Junjie Yang, Matthieu Labeau, Florence d'Alché-Buc:
Exploiting Edge Features in Graphs with Fused Network Gromov-Wasserstein Distance. CoRR abs/2309.16604 (2023) - [i27]Quentin Bouniot, Pavlo Mozharovskyi, Florence d'Alché-Buc:
Tailoring Mixup to Data using Kernel Warping functions. CoRR abs/2311.01434 (2023) - [i26]Arturo Castellanos, Pavlo Mozharovskyi, Florence d'Alché-Buc, Hicham Janati:
Fast kernel half-space depth for data with non-convex supports. CoRR abs/2312.14136 (2023) - [i25]Romain Valla, Pavlo Mozharovskyi, Florence d'Alché-Buc:
Anomaly component analysis. CoRR abs/2312.16139 (2023) - 2022
- [j20]Luc Brogat-Motte, Alessandro Rudi, Céline Brouard, Juho Rousu, Florence d'Alché-Buc:
Vector-Valued Least-Squares Regression under Output Regularity Assumptions. J. Mach. Learn. Res. 23: 344:1-344:50 (2022) - [c40]Etienne Desticourt, Véronique Letort, Florence d'Alché-Buc:
Interpretable Generative Modeling Using a Hierarchical Topological VAE. CSCI 2022: 1415-1421 - [c39]Luc Brogat-Motte, Rémi Flamary, Céline Brouard, Juho Rousu, Florence d'Alché-Buc:
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters. ICML 2022: 2321-2335 - [c38]Alex Lambert, Dimitri Bouche, Zoltán Szabó, Florence d'Alché-Buc:
Functional Output Regression with Infimal Convolution: Exploring the Huber and ε-insensitive Losses. ICML 2022: 11844-11867 - [c37]Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Florence d'Alché-Buc, Gaël Richard:
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF. NeurIPS 2022 - [i24]Luc Brogat-Motte, Rémi Flamary, Céline Brouard, Juho Rousu, Florence d'Alché-Buc:
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters. CoRR abs/2202.03813 (2022) - [i23]Jayneel Parekh, Sanjeel Parekh, Pavlo Mozharovskyi, Florence d'Alché-Buc, Gaël Richard:
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF. CoRR abs/2202.11479 (2022) - [i22]Dimitri Bouche, Rémi Flamary, Florence d'Alché-Buc, Riwal Plougonven, Marianne Clausel, Jordi Badosa, Philippe Drobinski:
Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection. CoRR abs/2204.09362 (2022) - [i21]Tamim El Ahmad, Pierre Laforgue, Florence d'Alché-Buc:
p-Sparsified Sketches for Fast Multiple Output Kernel Methods. CoRR abs/2206.03827 (2022) - [i20]Alex Lambert, Dimitri Bouche, Zoltán Szabó, Florence d'Alché-Buc:
Functional Output Regression with Infimal Convolution: Exploring the Huber and ε-insensitive Losses. CoRR abs/2206.08220 (2022) - [i19]Luc Brogat-Motte, Alessandro Rudi, Céline Brouard, Juho Rousu, Florence d'Alché-Buc:
Vector-Valued Least-Squares Regression under Output Regularity Assumptions. CoRR abs/2211.08958 (2022) - 2021
- [j19]Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, Hugo Larochelle:
Improving Reproducibility in Machine Learning Research(A Report from the NeurIPS 2019 Reproducibility Program). J. Mach. Learn. Res. 22: 164:1-164:20 (2021) - [c36]Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, Florence d'Alché-Buc:
When OT meets MoM: Robust estimation of Wasserstein Distance. AISTATS 2021: 136-144 - [c35]Dimitri Bouche, Marianne Clausel, François Roueff, Florence d'Alché-Buc:
Nonlinear Functional Output Regression: A Dictionary Approach. AISTATS 2021: 235-243 - [c34]Jayneel Parekh, Pavlo Mozharovskyi, Florence d'Alché-Buc:
A Framework to Learn with Interpretation. NeurIPS 2021: 24273-24285 - [i18]Alex Lambert, Sanjeel Parekh, Zoltán Szabó, Florence d'Alché-Buc:
Emotion Transfer Using Vector-Valued Infinite Task Learning. CoRR abs/2102.05075 (2021) - [i17]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Depth-based pseudo-metrics between probability distributions. CoRR abs/2103.12711 (2021) - 2020
- [c33]Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d'Alché-Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, Jayneel Parekh:
Identifying the "right" level of explanation in a given situation. NeHuAI@ECAI 2020: 63-66 - [c32]Andrea Vaglio, Romain Hennequin, Manuel Moussallam, Gaël Richard, Florence d'Alché-Buc:
Audio-Based Detection of Explicit Content in Music. ICASSP 2020: 526-530 - [c31]Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d'Alché-Buc:
Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses. ICML 2020: 5598-5607 - [c30]Andrea Vaglio, Romain Hennequin, Manuel Moussallam, Gaël Richard, Florence d'Alché-Buc:
Multilingual lyrics-to-audio alignment. ISMIR 2020: 512-519 - [i16]Dimitri Bouche, Marianne Clausel, François Roueff, Florence d'Alché-Buc:
Nonlinear Functional Output Regression: a Dictionary Approach. CoRR abs/2003.01432 (2020) - [i15]Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d'Alché-Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, Jayneel Parekh:
Flexible and Context-Specific AI Explainability: A Multidisciplinary Approach. CoRR abs/2003.07703 (2020) - [i14]Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, Hugo Larochelle:
Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program). CoRR abs/2003.12206 (2020) - [i13]Guillaume Staerman, Pierre Laforgue, Pavlo Mozharovskyi, Florence d'Alché-Buc:
When OT meets MoM: Robust estimation of Wasserstein Distance. CoRR abs/2006.10325 (2020) - [i12]Luc Brogat-Motte, Alessandro Rudi, Céline Brouard, Juho Rousu, Florence d'Alché-Buc:
Learning Output Embeddings in Structured Prediction. CoRR abs/2007.14703 (2020) - [i11]Jayneel Parekh, Pavlo Mozharovskyi, Florence d'Alché-Buc:
A Framework to Learn with Interpretation. CoRR abs/2010.09345 (2020)
2010 – 2019
- 2019
- [c29]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Functional Isolation Forest. ACML 2019: 332-347 - [c28]Pierre Laforgue, Stéphan Clémençon, Florence d'Alché-Buc:
Autoencoding any Data through Kernel Autoencoders. AISTATS 2019: 1061-1069 - [c27]Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d'Alché-Buc:
Infinite Task Learning in RKHSs. AISTATS 2019: 1294-1302 - [c26]Alexandre Garcia, Pierre Colombo, Florence d'Alché-Buc, Slim Essid, Chloé Clavel:
From the Token to the Review: A Hierarchical Multimodal approach to Opinion Mining. EMNLP/IJCNLP (1) 2019: 5538-5547 - [e2]Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d'Alché-Buc, Emily B. Fox, Roman Garnett:
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. 2019 [contents] - [i10]Alexandre Garcia, Slim Essid, Florence d'Alché-Buc, Chloé Clavel:
A multimodal movie review corpus for fine-grained opinion mining. CoRR abs/1902.10102 (2019) - [i9]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Functional Isolation Forest. CoRR abs/1904.04573 (2019) - [i8]Alexandre Garcia, Pierre Colombo, Slim Essid, Florence d'Alché-Buc, Chloé Clavel:
From the Token to the Review: A Hierarchical Multimodal approach to Opinion Mining. CoRR abs/1908.11216 (2019) - [i7]Pierre Laforgue, Alex Lambert, Luc Motte, Florence d'Alché-Buc:
On the Dualization of Operator-Valued Kernel Machines. CoRR abs/1910.04621 (2019) - 2018
- [j18]Moussab Djerrab, Alexandre Garcia, Maxime Sangnier, Florence d'Alché-Buc:
Output Fisher embedding regression. Mach. Learn. 107(8-10): 1229-1256 (2018) - [c25]Alexandre Garcia, Chloé Clavel, Slim Essid, Florence d'Alché-Buc:
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction. ICML 2018: 1681-1689 - [c24]Anna Korba, Alexandre Garcia, Florence d'Alché-Buc:
A Structured Prediction Approach for Label Ranking. NeurIPS 2018: 9008-9018 - [i6]Alexandre Garcia, Slim Essid, Chloé Clavel, Florence d'Alché-Buc:
Structured Output Learning with Abstention: Application to Accurate Opinion Prediction. CoRR abs/1803.08355 (2018) - [i5]Romain Brault, Alex Lambert, Zoltán Szabó, Maxime Sangnier, Florence d'Alché-Buc:
Infinite-Task Learning with Vector-Valued RKHSs. CoRR abs/1805.08809 (2018) - [i4]Pierre Laforgue, Stéphan Clémençon, Florence d'Alché-Buc:
Autoencoding any Data through Kernel Autoencoders. CoRR abs/1805.11028 (2018) - [i3]Anna Korba, Alexandre Garcia, Florence d'Alché-Buc:
A Structured Prediction Approach for Label Ranking. CoRR abs/1807.02374 (2018) - 2017
- [j17]Blandine Romain, Laurence Rouet, Daniel Ohayon, Olivier Lucidarme, Florence d'Alché-Buc, Véronique Letort:
Parameter estimation of perfusion models in dynamic contrast-enhanced imaging: a unified framework for model comparison. Medical Image Anal. 35: 360-374 (2017) - [c23]Maxime Sangnier, Olivier Fercoq, Florence d'Alché-Buc:
Data sparse nonparametric regression with ε-insensitive losses. ACML 2017: 192-207 - 2016
- [j16]Céline Brouard, Huibin Shen, Kai Dührkop, Florence d'Alché-Buc, Sebastian Böcker, Juho Rousu:
Fast metabolite identification with Input Output Kernel Regression. Bioinform. 32(12): 28-36 (2016) - [j15]Céline Brouard, Marie Szafranski, Florence d'Alché-Buc:
Input Output Kernel Regression: Supervised and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels. J. Mach. Learn. Res. 17: 176:1-176:48 (2016) - [c22]Romain Brault, Markus Heinonen, Florence d'Alché-Buc:
Random Fourier Features For Operator-Valued Kernels. ACML 2016: 110-125 - [c21]Maxime Sangnier, Olivier Fercoq, Florence d'Alché-Buc:
Joint quantile regression in vector-valued RKHSs. NIPS 2016: 3693-3701 - [i2]Romain Brault, Florence d'Alché-Buc, Markus Heinonen:
Random Fourier Features for Operator-Valued Kernels. CoRR abs/1605.02536 (2016) - 2015
- [j14]Markus Heinonen, Olivier Guipaud, Fabien Milliat, Valérie Buard, Béatrice Micheau, Georges Tarlet, Marc Benderitter, Farida Zehraoui, Florence d'Alché-Buc:
Detecting time periods of differential gene expression using Gaussian processes: an application to endothelial cells exposed to radiotherapy dose fraction. Bioinform. 31(5): 728-735 (2015) - [j13]Néhémy Lim, Florence d'Alché-Buc, Cédric Auliac, George Michailidis:
Operator-valued kernel-based vector autoregressive models for network inference. Mach. Learn. 99(3): 489-513 (2015) - [j12]Adriana Birlutiu, Florence d'Alché-Buc, Tom Heskes:
A Bayesian Framework for Combining Protein and Network Topology Information for Predicting Protein-Protein Interactions. IEEE ACM Trans. Comput. Biol. Bioinform. 12(3): 538-550 (2015) - 2014
- [c20]Artémis Llamosi, Adel Mezine, Florence d'Alché-Buc, Véronique Letort, Michèle Sebag:
Experimental Design in Dynamical System Identification: A Bandit-Based Active Learning Approach. ECML/PKDD (2) 2014: 306-321 - [i1]Markus Heinonen, Florence d'Alché-Buc:
Learning nonparametric differential equations with operator-valued kernels and gradient matching. CoRR abs/1411.5172 (2014) - 2013
- [j11]Néhémy Lim, Yasin Senbabaoglu, George Michailidis, Florence d'Alché-Buc:
OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks. Bioinform. 29(11): 1416-1423 (2013) - [j10]Céline Brouard, Christel Vrain, Julie Dubois, David Castel, Marie-Anne Debily, Florence d'Alché-Buc:
Learning a Markov Logic network for supervised gene regulatory network inference. BMC Bioinform. 14: 273 (2013) - [c19]Florence d'Alché-Buc:
Inférence de réseaux biologiques : un défi pour la fouille de données structurées. EGC 2013: 5-6 - [c18]Blandine Romain, Véronique Letort, Olivier Lucidarme, Laurence Rouet, Florence d'Alché-Buc:
A Multi-task Learning Approach for Compartmental Model Parameter Estimation in DCE-CT Sequences. MICCAI (2) 2013: 271-278 - 2012
- [c17]Blandine Romain, Véronique Letort, Olivier Lucidarme, Florence d'Alché-Buc, Laurence Rouet:
Registration of Free-Breathing Abdominal 3D Contrast-Enhanced CT. Abdominal Imaging 2012: 274-282 - [c16]Blandine Romain, Véronique Letort, Olivier Lucidarme, Florence d'Alché-Buc, Laurence Rouet:
Optimisation of reconstruction for the registration of CT liver perfusion sequences. Image Processing 2012: 83143S - 2011
- [c15]Céline Brouard, Florence d'Alché-Buc, Marie Szafranski:
Semi-supervised Penalized Output Kernel Regression for Link Prediction. ICML 2011: 593-600 - 2010
- [c14]Nicolas Brunel, Florence d'Alché-Buc:
Flow-Based Bayesian Estimation of Nonlinear Differential Equations for Modeling Biological Networks. PRIB 2010: 443-454 - [p1]Florence d'Alché-Buc, Nicolas Brunei:
Estimation of Parametric Nonlinear ODEs for Biological Networks Identification. Learning and Inference in Computational Systems Biology 2010: 61-96
2000 – 2009
- 2009
- [j9]François Le Fèvre, Serge Smidtas, Cyril Combe, Maxime Durot, Florence d'Alché-Buc, Vincent Schächter:
CycSim - an online tool for exploring and experimenting with genome-scale metabolic models. Bioinform. 25(15): 1987-1988 (2009) - 2008
- [j8]Cédric Auliac, Vincent Frouin, Xavier Gidrol, Florence d'Alché-Buc:
Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset. BMC Bioinform. 9 (2008) - 2007
- [j7]Minh Quach, Nicolas Brunel, Florence d'Alché-Buc:
Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference. Bioinform. 23(23): 3209-3216 (2007) - [j6]Pierre Geurts, Nizar Touleimat, Marie Dutreix, Florence d'Alché-Buc:
Inferring biological networks with output kernel trees. BMC Bioinform. 8(S-2) (2007) - [c13]Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc:
Gradient boosting for kernelized output spaces. ICML 2007: 289-296 - [c12]Cédric Auliac, Florence d'Alché-Buc, Vincent Frouin:
Learning Transcriptional Regulatory Networks with Evolutionary Algorithms Enhanced with Niching. WILF 2007: 612-619 - 2006
- [c11]Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc:
Kernelizing the output of tree-based methods. ICML 2006: 345-352 - [e1]Joaquin Quiñonero Candela, Ido Dagan, Bernardo Magnini, Florence d'Alché-Buc:
Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment, First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers. Lecture Notes in Computer Science 3944, Springer 2006, ISBN 3-540-33427-0 [contents] - 2003
- [c10]Bruno-Edouard Perrin, Liva Ralaivola, Aurélien Mazurie, Samuele Bottani, Jacques Mallet, Florence d'Alché-Buc:
Gene networks inference using dynamic Bayesian networks. ECCB 2003: 138-148 - [c9]Marie-Jeanne Lesot, Florence d'Alché-Buc, George Siolas:
Evaluation of Topographic Clustering and Its Kernelization. ECML 2003: 265-276 - [c8]Liva Ralaivola, Florence d'Alché-Buc:
Dynamical Modeling with Kernels for Nonlinear Time Series Prediction. NIPS 2003: 129-136 - 2002
- [c7]George Siolas, Florence d'Alché-Buc:
Mixtures of Probabilistic PCAs and Fisher Kernels for Word and Document Modeling. ICANN 2002: 769-776 - 2001
- [c6]Yves Grandvalet, Florence d'Alché-Buc, Christophe Ambroise:
Boosting Mixture Models for Semi-supervised Learning. ICANN 2001: 41-48 - [c5]Liva Ralaivola, Florence d'Alché-Buc:
Incremental Support Vector Machine Learning: A Local Approach. ICANN 2001: 322-330 - [c4]Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise:
Semi-supervised MarginBoost. NIPS 2001: 553-560 - 2000
- [c3]George Siolas, Florence d'Alché-Buc:
Support Vector Machines Based on a Semantic Kernel for Text Categorization. IJCNN (5) 2000: 205-209
1990 – 1999
- 1999
- [j5]Olivier Gérard, Jean-Noël Patillon, Florence d'Alché-Buc:
Discharge Prediction of Rechargeable Batteries with Neural Networks. Integr. Comput. Aided Eng. 6(1): 41-52 (1999) - 1997
- [c2]Yann Guermeur, Florence d'Alché-Buc, Patrick Gallinari:
Optimal Linear Regression on Classifier Outputs. ICANN 1997: 481-486 - [c1]Olivier Gérard, Jean-Noël Patillon, Florence d'Alché-Buc:
Neural Network Adaptive Modeling of Battery Discharge Behavior. ICANN 1997: 1095-1100 - 1995
- [j4]Florence d'Alché-Buc, Jean-Pierre Nadal:
Méthodes constructives pour l'apprentissage à partir d'exemples : les arbres neuronaux hybrides et leur comportement asymptotique. Monde des Util. Anal. Données 16: 1-17 (1995) - [j3]Florence d'Alché-Buc, Jean-Pierre Nadal:
Asymptotic performances of a constructive algorithm. Neural Process. Lett. 2(2): 1-4 (1995) - 1994
- [j2]Florence d'Alché-Buc, Vincent Andrés, Jean-Pierre Nadal:
Rule Extraction with Fuzzy Neural Network. Int. J. Neural Syst. 5(1): 1-11 (1994) - [j1]Florence d'Alché-Buc, Didier Zwierski, Jean-Pierre Nadal:
Trio Learning: A New Strategy for Building Hybrid Neural Trees. Int. J. Neural Syst. 5(4): 259-274 (1994)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-28 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint