default search action
Joni Pajarinen
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j23]Zhelin Zhang, Tie Liu, Liang Ding, Haoyu Wang, Peng Xu, Huaiguang Yang, Haibo Gao, Zongquan Deng, Joni Pajarinen:
Imitation-Enhanced Reinforcement Learning With Privileged Smooth Transition for Hexapod Locomotion. IEEE Robotics Autom. Lett. 10(1): 350-357 (2025) - [j22]Abdolreza Taheri, Amy Rankka, Pelle Gustafsson, Joni Pajarinen, Reza Ghabcheloo:
End-Effector Cartesian Velocity Control for Redundant Loader Cranes Using Reinforcement learning. IEEE Trans. Robotics 41: 484-496 (2025) - 2024
- [j21]Changling Li, Zhang-Wei Hong, Pulkit Agrawal, Divyansh Garg, Joni Pajarinen:
ROER: Regularized Optimal Experience Replay. RLJ 4: 1598-1618 (2024) - [j20]Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search. J. Artif. Intell. Res. 81: 511-578 (2024) - [j19]Yang Weng, Sehwa Chun, Masaki Ohashi, Takumi Matsuda, Yuki Sekimori, Joni Pajarinen, Jan Peters, Toshihiro Maki:
Autonomous underwater vehicle link alignment control in unknown environments using reinforcement learning. J. Field Robotics 41(6): 1724-1743 (2024) - [j18]Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
On the Benefit of Optimal Transport for Curriculum Reinforcement Learning. IEEE Trans. Pattern Anal. Mach. Intell. 46(11): 7191-7204 (2024) - [c43]Zhiyuan Li, Wenshuai Zhao, Lijun Wu, Joni Pajarinen:
Backpropagation Through Agents. AAAI 2024: 13718-13726 - [c42]Kalle Kujanpää, Amin Babadi, Yi Zhao, Juho Kannala, Alexander Ilin, Joni Pajarinen:
Continuous Monte Carlo Graph Search. AAMAS 2024: 1047-1056 - [c41]Aidan Scannell, Riccardo Mereu, Paul Edmund Chang, Ella Tamir, Joni Pajarinen, Arno Solin:
Function-space Parameterization of Neural Networks for Sequential Learning. ICLR 2024 - [c40]Vivienne Huiling Wang, Tinghuai Wang, Wenyan Yang, Joni-Kristian Kämäräinen, Joni Pajarinen:
Probabilistic Subgoal Representations for Hierarchical Reinforcement Learning. ICML 2024 - [c39]Wenshuai Zhao, Yi Zhao, Zhiyuan Li, Juho Kannala, Joni Pajarinen:
Optimistic Multi-Agent Policy Gradient. ICML 2024 - [c38]Mohammadreza Nakhaei, Aidan Scannell, Joni Pajarinen:
Residual learning and context encoding for adaptive offline-to-online reinforcement learning. L4DC 2024: 1107-1121 - [c37]Kari Hepola, Jatan Shrestha, Joonas Multanen, Vivienne Wang, Joni Pajarinen, Pekka Jääskeläinen:
Cycle Count Estimation of VLIW Processors Using Machine Learning. NorCAS 2024: 1-7 - [i56]Zhiyuan Li, Wenshuai Zhao, Lijun Wu, Joni Pajarinen:
AgentMixer: Multi-Agent Correlated Policy Factorization. CoRR abs/2401.08728 (2024) - [i55]Zhiyuan Li, Wenshuai Zhao, Lijun Wu, Joni Pajarinen:
Backpropagation Through Agents. CoRR abs/2401.12574 (2024) - [i54]Aidan Scannell, Riccardo Mereu, Paul E. Chang, Ella Tamir, Joni Pajarinen, Arno Solin:
Function-space Parameterization of Neural Networks for Sequential Learning. CoRR abs/2403.10929 (2024) - [i53]Aidan Scannell, Kalle Kujanpää, Yi Zhao, Mohammadreza Nakhaei, Arno Solin, Joni Pajarinen:
iQRL - Implicitly Quantized Representations for Sample-efficient Reinforcement Learning. CoRR abs/2406.02696 (2024) - [i52]Mohammadreza Nakhaei, Aidan Scannell, Joni Pajarinen:
Residual Learning and Context Encoding for Adaptive Offline-to-Online Reinforcement Learning. CoRR abs/2406.08238 (2024) - [i51]Vivienne Huiling Wang, Tinghuai Wang, Wenyan Yang, Joni-Kristian Kämäräinen, Joni Pajarinen:
Probabilistic Subgoal Representations for Hierarchical Reinforcement learning. CoRR abs/2406.16707 (2024) - [i50]Changling Li, Zhang-Wei Hong, Pulkit Agrawal, Divyansh Garg, Joni Pajarinen:
ROER: Regularized Optimal Experience Replay. CoRR abs/2407.03995 (2024) - [i49]Yi Zhao, Le Chen, Jan Schneider, Quankai Gao, Juho Kannala, Bernhard Schölkopf, Joni Pajarinen, Dieter Büchler:
RP1M: A Large-Scale Motion Dataset for Piano Playing with Bi-Manual Dexterous Robot Hands. CoRR abs/2408.11048 (2024) - [i48]Yuying Zhang, Wenyan Yang, Joni Pajarinen:
DeMoBot: Deformable Mobile Manipulation with Vision-based Sub-goal Retrieval. CoRR abs/2408.15919 (2024) - [i47]Rongzhen Zhao, Vivienne Wang, Juho Kannala, Joni Pajarinen:
Multi-Scale Fusion for Object Representation. CoRR abs/2410.01539 (2024) - [i46]Wenshuai Zhao, Yi Zhao, Joni Pajarinen, Michael Muehlebach:
Bi-Level Motion Imitation for Humanoid Robots. CoRR abs/2410.01968 (2024) - [i45]Rongzhen Zhao, Vivienne Wang, Juho Kannala, Joni Pajarinen:
Grouped Discrete Representation for Object-Centric Learning. CoRR abs/2411.02299 (2024) - 2023
- [j17]Qingfeng Yao, Linghan Meng, Qifeng Zhang, Jing Zhao, Joni Pajarinen, Xiaohui Wang, Zhibin Li, Cong Wang:
Learning-Based Propulsion Control for Amphibious Quadruped Robots With Dynamic Adaptation to Changing Environment. IEEE Robotics Autom. Lett. 8(12): 7889-7896 (2023) - [j16]Mikko Lauri, David Hsu, Joni Pajarinen:
Partially Observable Markov Decision Processes in Robotics: A Survey. IEEE Trans. Robotics 39(1): 21-40 (2023) - [j15]Joni Pajarinen, Jens Lundell, Ville Kyrki:
POMDP Planning Under Object Composition Uncertainty: Application to Robotic Manipulation. IEEE Trans. Robotics 39(1): 41-56 (2023) - [c36]Vivienne Huiling Wang, Joni Pajarinen, Tinghuai Wang, Joni-Kristian Kämäräinen:
State-Conditioned Adversarial Subgoal Generation. AAAI 2023: 10184-10191 - [c35]Kalle Kujanpää, Joni Pajarinen, Alexander Ilin:
Hierarchical Imitation Learning with Vector Quantized Models. ICML 2023: 17896-17919 - [c34]Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, Joni Pajarinen:
Simplified Temporal Consistency Reinforcement Learning. ICML 2023: 42227-42246 - [c33]Wenyan Yang, Alexandre Angleraud, Roel S. Pieters, Joni Pajarinen, Joni-Kristian Kämäräinen:
Seq2Seq Imitation Learning for Tactile Feedback-based Manipulation. ICRA 2023: 5829-5836 - [c32]Yuhang Yang, Kalle Kujanpää, Amin Babadi, Joni Pajarinen, Alexander Ilin:
Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles. ITSC 2023: 1983-1988 - [c31]Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni Pajarinen, Romain Laroche, Abhishek Gupta, Pulkit Agrawal:
Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced Datasets. NeurIPS 2023 - [c30]Kalle Kujanpää, Joni Pajarinen, Alexander Ilin:
Hybrid Search for Efficient Planning with Completeness Guarantees. NeurIPS 2023 - [i44]Kalle Kujanpää, Joni Pajarinen, Alexander Ilin:
Hierarchical Imitation Learning with Vector Quantized Models. CoRR abs/2301.12962 (2023) - [i43]Wenyan Yang, Joni Pajarinen, Dinging Cai, Joni-Kristian Kämäräinen:
Prioritized offline Goal-swapping Experience Replay. CoRR abs/2302.07741 (2023) - [i42]Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, Joni-Kristian Kämäräinen:
Swapped goal-conditioned offline reinforcement learning. CoRR abs/2302.08865 (2023) - [i41]Wenyan Yang, Alexandre Angleraud, Roel S. Pieters, Joni Pajarinen, Joni-Kristian Kämäräinen:
Seq2Seq Imitation Learning for Tactile Feedback-based Manipulation. CoRR abs/2303.02646 (2023) - [i40]Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, Joni Pajarinen:
Simplified Temporal Consistency Reinforcement Learning. CoRR abs/2306.09466 (2023) - [i39]Abdolreza Taheri, Robert Pettersson, Pelle Gustafsson, Joni Pajarinen, Reza Ghabcheloo:
Towards Energy Efficient Control for Commercial Heavy-Duty Mobile Cranes: Modeling Hydraulic Pressures using Machine Learning. CoRR abs/2307.16681 (2023) - [i38]Yuhang Yang, Kalle Kujanpää, Amin Babadi, Joni Pajarinen, Alexander Ilin:
Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles. CoRR abs/2309.00249 (2023) - [i37]Aidan Scannell, Riccardo Mereu, Paul E. Chang, Ella Tamir, Joni Pajarinen, Arno Solin:
Sparse Function-space Representation of Neural Networks. CoRR abs/2309.02195 (2023) - [i36]Tuan Dam, Pascal Stenger, Lukas Schneider, Joni Pajarinen, Carlo D'Eramo, Odalric-Ambrym Maillard:
Monte-Carlo tree search with uncertainty propagation via optimal transport. CoRR abs/2309.10737 (2023) - [i35]Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
On the Benefit of Optimal Transport for Curriculum Reinforcement Learning. CoRR abs/2309.14091 (2023) - [i34]Pascal Klink, Florian Wolf, Kai Ploeger, Jan Peters, Joni Pajarinen:
Tracking Control for a Spherical Pendulum via Curriculum Reinforcement Learning. CoRR abs/2309.14096 (2023) - [i33]Wenshuai Zhao, Eetu-Aleksi Rantala, Joni Pajarinen, Jorge Peña Queralta:
Less Is More: Robust Robot Learning via Partially Observable Multi-Agent Reinforcement Learning. CoRR abs/2309.14792 (2023) - [i32]Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni Pajarinen, Romain Laroche, Abhishek Gupta, Pulkit Agrawal:
Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced Datasets. CoRR abs/2310.04413 (2023) - [i31]Kalle Kujanpää, Joni Pajarinen, Alexander Ilin:
Hybrid Search for Efficient Planning with Completeness Guarantees. CoRR abs/2310.12819 (2023) - [i30]Wenshuai Zhao, Yi Zhao, Zhiyuan Li, Juho Kannala, Joni Pajarinen:
Optimistic Multi-Agent Policy Gradient for Cooperative Tasks. CoRR abs/2311.01953 (2023) - 2022
- [j14]Simone Parisi, Davide Tateo, Maximilian Hensel, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Long-Term Visitation Value for Deep Exploration in Sparse-Reward Reinforcement Learning. Algorithms 15(3): 81 (2022) - [j13]Nataliya Strokina, Wenyan Yang, Joni Pajarinen, Nikolay Serbenyuk, Joni-Kristian Kämäräinen, Reza Ghabcheloo:
Visual Rewards From Observation for Sequential Tasks: Autonomous Pile Loading. Frontiers Robotics AI 9: 838059 (2022) - [j12]Abdolreza Taheri, Pelle Gustafsson, Marcus Rösth, Reza Ghabcheloo, Joni Pajarinen:
Nonlinear Model Learning for Compensation and Feedforward Control of Real-World Hydraulic Actuators Using Gaussian Processes. IEEE Robotics Autom. Lett. 7(4): 9525-9532 (2022) - [j11]Tuan Dam, Georgia Chalvatzaki, Jan Peters, Joni Pajarinen:
Monte-Carlo Robot Path Planning. IEEE Robotics Autom. Lett. 7(4): 11213-11220 (2022) - [c29]Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, Joni Pajarinen:
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforcement Learning. ESANN 2022 - [c28]Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, Joni Pajarinen, Pulkit Agrawal:
Topological Experience Replay. ICLR 2022 - [c27]Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Boosted Curriculum Reinforcement Learning. ICLR 2022 - [c26]Pascal Klink, Haoyi Yang, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Curriculum Reinforcement Learning via Constrained Optimal Transport. ICML 2022: 11341-11358 - [c25]Abdolreza Taheri, Joni Pajarinen, Reza Ghabcheloo:
GPU-Accelerated Policy Optimization via Batch Automatic Differentiation of Gaussian Processes for Real-World Control. ICRA 2022: 10557-10563 - [c24]Eric Chen, Zhang-Wei Hong, Joni Pajarinen, Pulkit Agrawal:
Redeeming intrinsic rewards via constrained optimization. NeurIPS 2022 - [i29]Vivienne Huiling Wang, Joni Pajarinen, Tinghuai Wang, Joni-Kristian Kämäräinen:
Hierarchical Reinforcement Learning with Adversarially Guided Subgoals. CoRR abs/2201.09635 (2022) - [i28]Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search. CoRR abs/2202.07071 (2022) - [i27]Abdolreza Taheri, Joni Pajarinen, Reza Ghabcheloo:
GPU-Accelerated Policy Optimization via Batch Automatic Differentiation of Gaussian Processes for Real-World Control. CoRR abs/2202.13638 (2022) - [i26]Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, Joni Pajarinen, Pulkit Agrawal:
Topological Experience Replay. CoRR abs/2203.15845 (2022) - [i25]Wenshuai Zhao, Joni Pajarinen:
Self-Paced Multi-Agent Reinforcement Learning. CoRR abs/2205.10016 (2022) - [i24]Tuan Dam, Georgia Chalvatzaki, Jan Peters, Joni Pajarinen:
Monte-Carlo Robot Path Planning. CoRR abs/2208.02673 (2022) - [i23]Mikko Lauri, David Hsu, Joni Pajarinen:
Partially Observable Markov Decision Processes in Robotics: A Survey. CoRR abs/2209.10342 (2022) - [i22]Amin Babadi, Yi Zhao, Juho Kannala, Alexander Ilin, Joni Pajarinen:
Continuous Monte Carlo Graph Search. CoRR abs/2210.01426 (2022) - [i21]Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, Joni Pajarinen:
Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforcement Learning. CoRR abs/2210.13846 (2022) - [i20]Eric Chen, Zhang-Wei Hong, Joni Pajarinen, Pulkit Agrawal:
Redeeming Intrinsic Rewards via Constrained Optimization. CoRR abs/2211.07627 (2022) - 2021
- [j10]Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning. J. Mach. Learn. Res. 22: 182:1-182:52 (2021) - [c23]Joe Watson, Jihao Andreas Lin, Pascal Klink, Joni Pajarinen, Jan Peters:
Latent Derivative Bayesian Last Layer Networks. AISTATS 2021: 1198-1206 - [c22]Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Convex Regularization in Monte-Carlo Tree Search. ICML 2021: 2365-2375 - [c21]Wenyan Yang, Nataliya Strokina, Nikolay Serbenyuk, Joni Pajarinen, Reza Ghabcheloo, Juho Vihonen, Mohammad M. Aref, Joni-Kristian Kämäräinen:
Neural Network Controller for Autonomous Pile Loading Revised. ICRA 2021: 2198-2204 - [c20]Lauri Alho, Adrian Burian, Janne Helenius, Joni Pajarinen:
Machine Learning Based Mobile Network Throughput Classification. WCNC 2021: 1-6 - [i19]Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement Learning. CoRR abs/2102.13176 (2021) - [i18]Wenyan Yang, Nataliya Strokina, Nikolay Serbenyuk, Joni Pajarinen, Reza Ghabcheloo, Juho Vihonen, Mohammad M. Aref, Joni-Kristian Kämäräinen:
Neural Network Controller for Autonomous Pile Loading Revised. CoRR abs/2103.12379 (2021) - [i17]Stephan Weigand, Pascal Klink, Jan Peters, Joni Pajarinen:
Reinforcement Learning using Guided Observability. CoRR abs/2104.10986 (2021) - 2020
- [j9]Mikko Lauri, Joni Pajarinen, Jan Peters:
Multi-agent active information gathering in discrete and continuous-state decentralized POMDPs by policy graph improvement. Auton. Agents Multi Agent Syst. 34(2): 42 (2020) - [j8]Mikko Lauri, Joni Pajarinen, Jan Peters, Simone Frintrop:
Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization. IEEE Robotics Autom. Lett. 5(4): 5323-5330 (2020) - [j7]Joni Pajarinen, Oleg Arenz, Jan Peters, Gerhard Neumann:
Probabilistic Approach to Physical Object Disentangling. IEEE Robotics Autom. Lett. 5(4): 5510-5517 (2020) - [c19]Tuan Dam, Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Generalized Mean Estimation in Monte-Carlo Tree Search. IJCAI 2020: 2397-2404 - [c18]Melvin Laux, Oleg Arenz, Jan Peters, Joni Pajarinen:
Deep Adversarial Reinforcement Learning for Object Disentangling. IROS 2020: 5504-5510 - [c17]Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Self-Paced Deep Reinforcement Learning. NeurIPS 2020 - [i16]Simone Parisi, Davide Tateo, Maximilian Hensel, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Long-Term Visitation Value for Deep Exploration in Sparse Reward Reinforcement Learning. CoRR abs/2001.00119 (2020) - [i15]Joni Pajarinen, Oleg Arenz, Jan Peters, Gerhard Neumann:
Probabilistic approach to physical object disentangling. CoRR abs/2002.11495 (2020) - [i14]Melvin Laux, Oleg Arenz, Jan Peters, Joni Pajarinen:
Deep Adversarial Reinforcement Learning for Object Disentangling. CoRR abs/2003.03779 (2020) - [i13]Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Self-Paced Deep Reinforcement Learning. CoRR abs/2004.11812 (2020) - [i12]Lauri Alho, Adrian Burian, Janne Helenius, Joni Pajarinen:
Machine Learning Based Mobile Network Throughput Classification. CoRR abs/2004.13148 (2020) - [i11]Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Convex Regularization in Monte-Carlo Tree Search. CoRR abs/2007.00391 (2020) - [i10]Mikko Lauri, Joni Pajarinen, Jan Peters, Simone Frintrop:
Multi-Sensor Next-Best-View Planning as Matroid-Constrained Submodular Maximization. CoRR abs/2007.02084 (2020) - [i9]Joni Pajarinen:
Technical Report: The Policy Graph Improvement Algorithm. CoRR abs/2009.02164 (2020) - [i8]Joni Pajarinen, Jens Lundell, Ville Kyrki:
POMDP Manipulation Planning under Object Composition Uncertainty. CoRR abs/2010.13565 (2020)
2010 – 2019
- 2019
- [j6]Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, Gerhard Neumann:
Compatible natural gradient policy search. Mach. Learn. 108(8-9): 1443-1466 (2019) - [j5]Dorothea Koert, Joni Pajarinen, Albert Schotschneider, Susanne Trick, Constantin A. Rothkopf, Jan Peters:
Learning Intention Aware Online Adaptation of Movement Primitives. IEEE Robotics Autom. Lett. 4(4): 3719-3726 (2019) - [c16]Mikko Lauri, Joni Pajarinen, Jan Peters:
Information Gathering in Decentralized POMDPs by Policy Graph Improvement. AAMAS 2019: 1143-1151 - [c15]Riad Akrour, Joni Pajarinen, Jan Peters, Gerhard Neumann:
Projections for Approximate Policy Iteration Algorithms. ICML 2019: 181-190 - [c14]Samuele Tosatto, Carlo D'Eramo, Joni Pajarinen, Marcello Restelli, Jan Peters:
Exploration Driven by an Optimistic Bellman Equation. IJCNN 2019: 1-8 - [i7]Joni Pajarinen, Hong Linh Thai, Riad Akrour, Jan Peters, Gerhard Neumann:
Compatible Natural Gradient Policy Search. CoRR abs/1902.02823 (2019) - [i6]Mikko Lauri, Joni Pajarinen, Jan Peters:
Information Gathering in Decentralized POMDPs by Policy Graph Improvement. CoRR abs/1902.09840 (2019) - [i5]Zhang-Wei Hong, Joni Pajarinen, Jan Peters:
Model-based Lookahead Reinforcement Learning. CoRR abs/1908.06012 (2019) - [i4]Tuan Dam, Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen:
Generalized Mean Estimation in Monte-Carlo Tree Search. CoRR abs/1911.00384 (2019) - 2018
- [j4]Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters:
An Algorithmic Perspective on Imitation Learning. Found. Trends Robotics 7(1-2): 1-179 (2018) - [c13]Janine Hoelscher, Dorothea Koert, Jan Peters, Joni Pajarinen:
Utilizing Human Feedback in POMDP Execution and Specification. Humanoids 2018: 104-111 - [i3]Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J. Andrew Bagnell, Pieter Abbeel, Jan Peters:
An Algorithmic Perspective on Imitation Learning. CoRR abs/1811.06711 (2018) - 2017
- [j3]Joni Pajarinen, Ville Kyrki:
Robotic manipulation of multiple objects as a POMDP. Artif. Intell. 247: 213-228 (2017) - [c12]Joni Pajarinen, Ville Kyrki, Michael C. Koval, Siddhartha S. Srinivasa, Jan Peters, Gerhard Neumann:
Hybrid control trajectory optimization under uncertainty. IROS 2017: 5694-5701 - [i2]Joni Pajarinen, Ville Kyrki, Michael C. Koval, Siddhartha S. Srinivasa, Jan Peters, Gerhard Neumann:
Hybrid control trajectory optimization under uncertainty. CoRR abs/1702.04396 (2017) - 2016
- [c11]Kevin Sebastian Luck, Joni Pajarinen, Erik Berger, Ville Kyrki, Heni Ben Amor:
Sparse Latent Space Policy Search. AAAI 2016: 1911-1918 - [c10]Mattia Racca, Joni Pajarinen, Alberto Montebelli, Ville Kyrki:
Learning in-contact control strategies from demonstration. IROS 2016: 688-695 - [c9]Aleksi Ikkala, Joni Pajarinen, Ville Kyrki:
Benchmarking RGB-D Segmentation: Toy Dataset of Complex Crowded Scenes. VISIGRAPP (4: VISAPP) 2016: 107-116 - 2015
- [c8]Joni Pajarinen, Ville Kyrki:
Decision making under uncertain segmentations. ICRA 2015: 1303-1309 - 2014
- [j2]Joni Pajarinen, Ari Hottinen, Jaakko Peltonen:
Optimizing Spatial and Temporal Reuse inWireless Networks by Decentralized Partially Observable Markov Decision Processes. IEEE Trans. Mob. Comput. 13(4): 866-879 (2014) - [c7]Joni Pajarinen, Ville Kyrki:
Robotic manipulation in object composition space. IROS 2014: 1-6 - [c6]Polychronis Kondaxakis, Joni Pajarinen, Ville Kyrki:
Real-time recognition of pointing gestures for robot to robot interaction. IROS 2014: 2621-2626 - [i1]Joni Pajarinen, Ville Kyrki:
Robotic manipulation of multiple objects as a POMDP. CoRR abs/1402.0649 (2014) - 2013
- [b1]Joni Pajarinen:
Planning under uncertainty for large-scale problems with applications to wireless networking ; Päätöksenteko epävarmuuden vallitessa suurissa ongelmissa ja sovelluksia langattomaan tiedonsiirtoon. Aalto University, Helsinki, Finland, 2013 - [c5]Joni Pajarinen, Jaakko Peltonen:
Expectation Maximization for Average Reward Decentralized POMDPs. ECML/PKDD (1) 2013: 129-144 - 2011
- [j1]Joni Pajarinen, Jaakko Peltonen, Mikko A. Uusitalo:
Fault tolerant machine learning for nanoscale cognitive radio. Neurocomputing 74(5): 753-764 (2011) - [c4]Joni Pajarinen, Jaakko Peltonen:
Efficient Planning for Factored Infinite-Horizon DEC-POMDPs. IJCAI 2011: 325-331 - [c3]Joni Pajarinen, Jaakko Peltonen:
Periodic Finite State Controllers for Efficient POMDP and DEC-POMDP Planning. NIPS 2011: 2636-2644 - 2010
- [c2]Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, Mikko A. Uusitalo:
Efficient Planning in Large POMDPs through Policy Graph Based Factorized Approximations. ECML/PKDD (3) 2010: 1-16
2000 – 2009
- 2009
- [c1]Joni Pajarinen, Jaakko Peltonen, Mikko A. Uusitalo, Ari Hottinen:
Latent state models of primary user behavior for opportunistic spectrum access. PIMRC 2009: 1267-1271
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-16 23:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint