default search action
Dale Schuurmans
Person information
- affiliation: University of Alberta
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j24]Alex Ayoub, David Szepesvari, Francesco Zanini, Bryan Chan, Dhawal Gupta, Bruno Castro da Silva, Dale Schuurmans:
Mitigating the Curse of Horizon in Monte-Carlo Returns. RLJ 2: 563-572 (2024) - [c208]Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, Ekin Dogus Cubuk:
Scalable Diffusion for Materials Generation. ICLR 2024 - [c207]Sherry Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B. Tenenbaum, Pieter Abbeel:
Probabilistic Adaptation of Black-Box Text-to-Video Models. ICLR 2024 - [c206]Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kaelbling, Dale Schuurmans, Pieter Abbeel:
Learning Interactive Real-World Simulators. ICLR 2024 - [c205]Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christopher K. Harris, A. Rupam Mahmood, Dale Schuurmans:
Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation. ICML 2024 - [c204]Sherry Yang, Jacob C. Walker, Jack Parker-Holder, Yilun Du, Jake Bruce, André Barreto, Pieter Abbeel, Dale Schuurmans:
Position: Video as the New Language for Real-World Decision Making. ICML 2024 - [c203]Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai:
Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning. ICML 2024 - [i103]Shicong Cen, Jincheng Mei, Hanjun Dai, Dale Schuurmans, Yuejie Chi, Bo Dai:
Beyond Expectations: Learning with Stochastic Dominance Made Practical. CoRR abs/2402.02698 (2024) - [i102]Sherry Yang, Jacob C. Walker, Jack Parker-Holder, Yilun Du, Jake Bruce, André Barreto, Pieter Abbeel, Dale Schuurmans:
Video as the New Language for Real-World Decision Making. CoRR abs/2402.17139 (2024) - [i101]Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvári, Dale Schuurmans:
Stochastic Gradient Succeeds for Bandits. CoRR abs/2402.17235 (2024) - [i100]Arsalan Sharifnassab, Sina Ghiassian, Saber Salehkaleybar, Surya Kanoria, Dale Schuurmans:
Soft Preference Optimization: Aligning Language Models to Expert Distributions. CoRR abs/2405.00747 (2024) - [i99]Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie Chi, Bo Dai:
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF. CoRR abs/2405.19320 (2024) - [i98]Fengdi Che, Chenjun Xiao, Jincheng Mei, Bo Dai, Ramki Gummadi, Oscar A. Ramirez, Christopher K. Harris, A. Rupam Mahmood, Dale Schuurmans:
Target Networks and Over-parameterization Stabilize Off-policy Bootstrapping with Function Approximation. CoRR abs/2405.21043 (2024) - [i97]Alex Lewandowski, Saurabh Kumar, Dale Schuurmans, András György, Marlos C. Machado:
Learning Continually by Spectral Regularization. CoRR abs/2406.06811 (2024) - [i96]Bernd Bohnet, Azade Nova, Aaron T. Parisi, Kevin Swersky, Katayoon Goshvadi, Hanjun Dai, Dale Schuurmans, Noah Fiedel, Hanie Sedghi:
Exploring and Benchmarking the Planning Capabilities of Large Language Models. CoRR abs/2406.13094 (2024) - [i95]Hanjun Dai, Bethany Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, Dale Schuurmans:
UQE: A Query Engine for Unstructured Databases. CoRR abs/2407.09522 (2024) - [i94]Sherry Yang, Simon L. Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow, Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, Ekin D. Cubuk:
Generative Hierarchical Materials Search. CoRR abs/2409.06762 (2024) - [i93]Dale Schuurmans, Hanjun Dai, Francesco Zanini:
Autoregressive Large Language Models are Computationally Universal. CoRR abs/2410.03170 (2024) - [i92]Alex Lewandowski, Dale Schuurmans, Marlos C. Machado:
Plastic Learning with Deep Fourier Features. CoRR abs/2410.20634 (2024) - [i91]Tong Yang, Jincheng Mei, Hanjun Dai, Zixin Wen, Shicong Cen, Dale Schuurmans, Yuejie Chi, Bo Dai:
Faster WIND: Accelerating Iterative Best-of-N Distillation for LLM Alignment. CoRR abs/2410.20727 (2024) - [i90]Bryan Chan, Xinyi Chen, András György, Dale Schuurmans:
Toward Understanding In-context vs. In-weight Learning. CoRR abs/2410.23042 (2024) - [i89]Hiroki Furuta, Heiga Zen, Dale Schuurmans, Aleksandra Faust, Yutaka Matsuo, Percy Liang, Sherry Yang:
Improving Dynamic Object Interactions in Text-to-Video Generation with AI Feedback. CoRR abs/2412.02617 (2024) - 2023
- [j23]Calarina Muslimani, Alex Lewandowski, Dale Schuurmans, Matthew E. Taylor, Jun Luo:
Reinforcement Teaching. Trans. Mach. Learn. Res. 2023 (2023) - [c202]Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans:
Discrete Langevin Samplers via Wasserstein Gradient Flow. AISTATS 2023: 6290-6313 - [c201]Hanjun Dai, Yuan Xue, Niao He, Yixin Wang, Na Li, Dale Schuurmans, Bo Dai:
Learning to Optimize with Stochastic Dominance Constraints. AISTATS 2023: 8991-9009 - [c200]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. ICLR 2023 - [c199]Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny Zhou:
What learning algorithm is in-context learning? Investigations with linear models. ICLR 2023 - [c198]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. ICLR 2023 - [c197]Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Spectral Decomposition Representation for Reinforcement Learning. ICLR 2023 - [c196]Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, Hanjun Dai:
Any-scale Balanced Samplers for Discrete Space. ICLR 2023 - [c195]Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, Hanjun Dai:
Score-based Continuous-time Discrete Diffusion Models. ICLR 2023 - [c194]Sherry Yang, Dale Schuurmans, Pieter Abbeel, Ofir Nachum:
Dichotomy of Control: Separating What You Can Control from What You Cannot. ICLR 2023 - [c193]Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, Joseph E. Gonzalez:
TEMPERA: Test-Time Prompt Editing via Reinforcement Learning. ICLR 2023 - [c192]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V. Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. ICLR 2023 - [c191]Jincheng Mei, Zixin Zhong, Bo Dai, Alekh Agarwal, Csaba Szepesvári, Dale Schuurmans:
Stochastic Gradient Succeeds for Bandits. ICML 2023: 24325-24360 - [c190]Azade Nova, Hanjun Dai, Dale Schuurmans:
Gradient-Free Structured Pruning with Unlabeled Data. ICML 2023: 26326-26341 - [c189]Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, Hanjun Dai:
Revisiting Sampling for Combinatorial Optimization. ICML 2023: 32859-32874 - [c188]Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, Pieter Abbeel:
Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023 - [c187]Katayoon Goshvadi, Haoran Sun, Xingchao Liu, Azade Nova, Ruqi Zhang, Will Grathwohl, Dale Schuurmans, Hanjun Dai:
DISCS: A Benchmark for Discrete Sampling. NeurIPS 2023 - [c186]Jincheng Mei, Bo Dai, Alekh Agarwal, Mohammad Ghavamzadeh, Csaba Szepesvári, Dale Schuurmans:
Ordering-based Conditions for Global Convergence of Policy Gradient Methods. NeurIPS 2023 - [c185]Zichen Vincent Zhang, Johannes Kirschner, Junxi Zhang, Francesco Zanini, Alex Ayoub, Masood Dehghan, Dale Schuurmans:
Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off. NeurIPS 2023 - [c184]Tianjun Zhang, Tongzheng Ren, Chenjun Xiao, Wenli Xiao, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Energy-based Predictive Representations for Partially Observed Reinforcement Learning. UAI 2023: 2477-2487 - [i88]Dale Schuurmans:
Memory Augmented Large Language Models are Computationally Universal. CoRR abs/2301.04589 (2023) - [i87]Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
The Role of Baselines in Policy Gradient Optimization. CoRR abs/2301.06276 (2023) - [i86]Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schuurmans, Pieter Abbeel:
Learning Universal Policies via Text-Guided Video Generation. CoRR abs/2302.00111 (2023) - [i85]Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, Dale Schuurmans:
Foundation Models for Decision Making: Problems, Methods, and Opportunities. CoRR abs/2303.04129 (2023) - [i84]Azade Nova, Hanjun Dai, Dale Schuurmans:
Gradient-Free Structured Pruning with Unlabeled Data. CoRR abs/2303.04185 (2023) - [i83]Mengjiao Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B. Tenenbaum, Pieter Abbeel:
Probabilistic Adaptation of Text-to-Video Models. CoRR abs/2306.01872 (2023) - [i82]Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, Pieter Abbeel:
Learning Interactive Real-World Simulators. CoRR abs/2310.06114 (2023) - [i81]Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, Hanjun Dai:
Large Language Models can Learn Rules. CoRR abs/2310.07064 (2023) - [i80]Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mordatch, Ekin Dogus Cubuk:
Scalable Diffusion for Materials Generation. CoRR abs/2311.09235 (2023) - [i79]Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai:
Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning. CoRR abs/2311.12244 (2023) - [i78]Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, Marlos C. Machado:
Curvature Explains Loss of Plasticity. CoRR abs/2312.00246 (2023) - 2022
- [c183]Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:
Offline Policy Selection under Uncertainty. AISTATS 2022: 4376-4396 - [c182]Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvári:
The Curse of Passive Data Collection in Batch Reinforcement Learning. AISTATS 2022: 8413-8438 - [c181]Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, Bo Dai:
Neural Stochastic Dual Dynamic Programming. ICLR 2022 - [c180]Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A. Ramirez, Ramki Gummadi, Chris Harris, Dale Schuurmans:
Understanding and Leveraging Overparameterization in Recursive Value Estimation. ICLR 2022 - [c179]Hanjun Dai, Mengjiao Yang, Yuan Xue, Dale Schuurmans, Bo Dai:
Marginal Distribution Adaptation for Discrete Sets via Module-Oriented Divergence Minimization. ICML 2022: 4605-4617 - [c178]Ramki Gummadi, Saurabh Kumar, Junfeng Wen, Dale Schuurmans:
A Parametric Class of Approximate Gradient Updates for Policy Optimization. ICML 2022: 7998-8015 - [c177]Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonzalez, Dale Schuurmans, Bo Dai:
Making Linear MDPs Practical via Contrastive Representation Learning. ICML 2022: 26447-26466 - [c176]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, Dale Schuurmans:
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs. KDD 2022: 1472-1482 - [c175]Zichen Zhang, Jun Jin, Martin Jägersand, Jun Luo, Dale Schuurmans:
A Simple Decentralized Cross-Entropy Method. NeurIPS 2022 - [c174]Jincheng Mei, Wesley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
The Role of Baselines in Policy Gradient Optimization. NeurIPS 2022 - [c173]Haoran Sun, Hanjun Dai, Dale Schuurmans:
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces. NeurIPS 2022 - [c172]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le, Denny Zhou:
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. NeurIPS 2022 - [c171]Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, Ofir Nachum:
Chain of Thought Imitation with Procedure Cloning. NeurIPS 2022 - [c170]Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li:
On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games. NeurIPS 2022 - [i77]Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, Denny Zhou:
Chain of Thought Prompting Elicits Reasoning in Large Language Models. CoRR abs/2201.11903 (2022) - [i76]Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, Na Li:
On the Effect of Log-Barrier Regularization in Decentralized Softmax Gradient Play in Multiagent Systems. CoRR abs/2202.00872 (2022) - [i75]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Self-Consistency Improves Chain of Thought Reasoning in Language Models. CoRR abs/2203.11171 (2022) - [i74]Alex Lewandowski, Calarina Muslimani, Matthew E. Taylor, Jun Luo, Dale Schuurmans:
Reinforcement Teaching. CoRR abs/2204.11897 (2022) - [i73]Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, Ed H. Chi:
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. CoRR abs/2205.10625 (2022) - [i72]Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, Ofir Nachum:
Chain of Thought Imitation with Procedure Cloning. CoRR abs/2205.10816 (2022) - [i71]Ramki Gummadi, Saurabh Kumar, Junfeng Wen, Dale Schuurmans:
A Parametric Class of Approximate Gradient Updates for Policy Optimization. CoRR abs/2206.08499 (2022) - [i70]Haoran Sun, Hanjun Dai, Bo Dai, Haomin Zhou, Dale Schuurmans:
Discrete Langevin Sampler via Wasserstein Gradient Flow. CoRR abs/2206.14897 (2022) - [i69]Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Denny Zhou:
Rationale-Augmented Ensembles in Language Models. CoRR abs/2207.00747 (2022) - [i68]Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Making Linear MDPs Practical via Contrastive Representation Learning. CoRR abs/2207.07150 (2022) - [i67]Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai:
Spectral Decomposition Representation for Reinforcement Learning. CoRR abs/2208.09515 (2022) - [i66]Haoran Sun, Hanjun Dai, Dale Schuurmans:
Optimal Scaling for Locally Balanced Proposals in Discrete Spaces. CoRR abs/2209.08183 (2022) - [i65]Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, Ofir Nachum:
Dichotomy of Control: Separating What You Can Control from What You Cannot. CoRR abs/2210.13435 (2022) - [i64]Hanjun Dai, Yuan Xue, Niao He, Bethany Wang, Na Li, Dale Schuurmans, Bo Dai:
Learning to Optimize with Stochastic Dominance Constraints. CoRR abs/2211.07767 (2022) - [i63]Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schuurmans, Joseph E. Gonzalez:
TEMPERA: Test-Time Prompting via Reinforcement Learning. CoRR abs/2211.11890 (2022) - [i62]Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, Denny Zhou:
What learning algorithm is in-context learning? Investigations with linear models. CoRR abs/2211.15661 (2022) - [i61]Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, Hanjun Dai:
Score-based Continuous-time Discrete Diffusion Models. CoRR abs/2211.16750 (2022) - [i60]Zichen Zhang, Jun Jin, Martin Jägersand, Jun Luo, Dale Schuurmans:
A Simple Decentralized Cross-Entropy Method. CoRR abs/2212.08235 (2022) - [i59]Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai:
Latent Variable Representation for Reinforcement Learning. CoRR abs/2212.08765 (2022) - [i58]Zichen Zhang, Johannes Kirschner, Junxi Zhang, Francesco Zanini, Alex Ayoub, Masood Dehghan, Dale Schuurmans:
Managing Temporal Resolution in Continuous Value Estimation: A Fundamental Trade-off. CoRR abs/2212.08949 (2022) - 2021
- [c169]Mahdi Karami, Dale Schuurmans:
Deep Probabilistic Canonical Correlation Analysis. AAAI 2021: 8055-8063 - [c168]Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, Shixiang Shane Gu:
EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL. ICML 2021: 3682-3691 - [c167]Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
Leveraging Non-uniformity in First-order Non-convex Optimization. ICML 2021: 7555-7564 - [c166]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian Sun, Dale Schuurmans, Jure Leskovec, Denny Zhou:
LEGO: Latent Execution-Guided Reasoning for Multi-Hop Question Answering on Knowledge Graphs. ICML 2021: 8959-8970 - [c165]Junfeng Wen, Saurabh Kumar, Ramki Gummadi, Dale Schuurmans:
Characterizing the Gap Between Actor-Critic and Policy Gradient. ICML 2021: 11101-11111 - [c164]Chenjun Xiao, Yifan Wu, Jincheng Mei, Bo Dai, Tor Lattimore, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
On the Optimality of Batch Policy Optimization Algorithms. ICML 2021: 11362-11371 - [c163]Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
Understanding the Effect of Stochasticity in Policy Optimization. NeurIPS 2021: 19339-19351 - [c162]Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, Bo Dai:
Combiner: Full Attention Transformer with Sparse Computation Cost. NeurIPS 2021: 22470-22482 - [i57]Nevena Lazic, Botao Hao, Yasin Abbasi-Yadkori, Dale Schuurmans, Csaba Szepesvári:
Optimization Issues in KL-Constrained Approximate Policy Iteration. CoRR abs/2102.06234 (2021) - [i56]Chenjun Xiao, Yifan Wu, Tor Lattimore, Bo Dai, Jincheng Mei, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
On the Optimality of Batch Policy Optimization Algorithms. CoRR abs/2104.02293 (2021) - [i55]Dennis Lee, Natasha Jaques, J. Chase Kew, Douglas Eck, Dale Schuurmans, Aleksandra Faust:
Joint Attention for Multi-Agent Coordination and Social Learning. CoRR abs/2104.07750 (2021) - [i54]Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, Dale Schuurmans:
Leveraging Non-uniformity in First-order Non-convex Optimization. CoRR abs/2105.06072 (2021) - [i53]Junfeng Wen, Saurabh Kumar, Ramki Gummadi, Dale Schuurmans:
Characterizing the Gap Between Actor-Critic and Policy Gradient. CoRR abs/2106.06932 (2021) - [i52]Chenjun Xiao, Ilbin Lee, Bo Dai, Dale Schuurmans, Csaba Szepesvári:
On the Sample Complexity of Batch Reinforcement Learning with Policy-Induced Data. CoRR abs/2106.09973 (2021) - [i51]Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure Leskovec, Dale Schuurmans, Bo Dai:
Combiner: Full Attention Transformer with Sparse Computation Cost. CoRR abs/2107.05768 (2021) - [i50]Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, Dale Schuurmans:
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs. CoRR abs/2110.14890 (2021) - [i49]Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
Understanding the Effect of Stochasticity in Policy Optimization. CoRR abs/2110.15572 (2021) - [i48]Hanjun Dai, Yuan Xue, Zia Syed, Dale Schuurmans, Bo Dai:
Neural Stochastic Dual Dynamic Programming. CoRR abs/2112.00874 (2021) - 2020
- [c161]Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans:
GenDICE: Generalized Offline Estimation of Stationary Values. ICLR 2020 - [c160]Rishabh Agarwal, Dale Schuurmans, Mohammad Norouzi:
An Optimistic Perspective on Offline Reinforcement Learning. ICML 2020: 104-114 - [c159]Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans:
Scalable Deep Generative Modeling for Sparse Graphs. ICML 2020: 2302-2312 - [c158]Jincheng Mei, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
On the Global Convergence Rates of Softmax Policy Gradient Methods. ICML 2020: 6820-6829 - [c157]Dijia Su, Jayden Ooi, Tyler Lu, Dale Schuurmans, Craig Boutilier:
ConQUR: Mitigating Delusional Bias in Deep Q-Learning. ICML 2020: 9187-9195 - [c156]Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans:
Batch Stationary Distribution Estimation. ICML 2020: 10203-10213 - [c155]Junfeng Wen, Russell Greiner, Dale Schuurmans:
Domain Aggregation Networks for Multi-Source Domain Adaptation. ICML 2020: 10214-10224 - [c154]Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans:
Energy-Based Processes for Exchangeable Data. ICML 2020: 10681-10692 - [c153]Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing Tan, Xiaodan Song, Quoc V. Le, Qiang Liu, Dale Schuurmans:
Go Wide, Then Narrow: Efficient Training of Deep Thin Networks. ICML 2020: 11546-11555 - [c152]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. NeurIPS 2020 - [c151]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. NeurIPS 2020 - [c150]Nevena Lazic, Dong Yin, Mehrdad Farajtabar, Nir Levine, Dilan Görür, Chris Harris, Dale Schuurmans:
A Maximum-Entropy Approach to Off-Policy Evaluation in Average-Reward MDPs. NeurIPS 2020 - [c149]Jincheng Mei, Chenjun Xiao, Bo Dai, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
Escaping the Gravitational Pull of Softmax. NeurIPS 2020 - [c148]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. NeurIPS 2020 - [i47]Ruiyi Zhang, Bo Dai, Lihong Li, Dale Schuurmans:
GenDICE: Generalized Offline Estimation of Stationary Values. CoRR abs/2002.09072 (2020) - [i46]Andy Su, Jayden Ooi, Tyler Lu, Dale Schuurmans, Craig Boutilier:
ConQUR: Mitigating Delusional Bias in Deep Q-learning. CoRR abs/2002.12399 (2020) - [i45]Junfeng Wen, Bo Dai, Lihong Li, Dale Schuurmans:
Batch Stationary Distribution Estimation. CoRR abs/2003.00722 (2020) - [i44]Mahdi Karami, Dale Schuurmans:
Variational Inference for Deep Probabilistic Canonical Correlation Analysis. CoRR abs/2003.04292 (2020) - [i43]Mengjiao Yang, Bo Dai, Hanjun Dai, Dale Schuurmans:
Energy-Based Processes for Exchangeable Data. CoRR abs/2003.07521 (2020) - [i42]Jincheng Mei, Chenjun Xiao, Csaba Szepesvári, Dale Schuurmans:
On the Global Convergence Rates of Softmax Policy Gradient Methods. CoRR abs/2005.06392 (2020) - [i41]Nevena Lazic, Dong Yin, Mehrdad Farajtabar, Nir Levine, Dilan Görür, Chris Harris, Dale Schuurmans:
A maximum-entropy approach to off-policy evaluation in average-reward MDPs. CoRR abs/2006.12620 (2020) - [i40]Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans:
Scalable Deep Generative Modeling for Sparse Graphs. CoRR abs/2006.15502 (2020) - [i39]Denny Zhou, Mao Ye, Chen Chen, Tianjian Meng, Mingxing Tan, Xiaodan Song, Quoc V. Le, Qiang Liu, Dale Schuurmans:
Go Wide, Then Narrow: Efficient Training of Deep Thin Networks. CoRR abs/2007.00811 (2020) - [i38]Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, Dale Schuurmans:
Off-Policy Evaluation via the Regularized Lagrangian. CoRR abs/2007.03438 (2020) - [i37]Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, Shixiang Shane Gu:
EMaQ: Expected-Max Q-Learning Operator for Simple Yet Effective Offline and Online RL. CoRR abs/2007.11091 (2020) - [i36]Nan Ding, Xinjie Fan, Zhenzhong Lan, Dale Schuurmans, Radu Soricut:
Attention that does not Explain Away. CoRR abs/2009.14308 (2020) - [i35]Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvári, Dale Schuurmans:
CoinDICE: Off-Policy Confidence Interval Estimation. CoRR abs/2010.11652 (2020) - [i34]Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans:
Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration. CoRR abs/2011.05363 (2020) - [i33]Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, Dale Schuurmans:
Offline Policy Selection under Uncertainty. CoRR abs/2012.06919 (2020)
2010 – 2019
- 2019
- [c147]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. AISTATS 2019: 2321-2330 - [c146]Rishabh Agarwal, Chen Liang, Dale Schuurmans, Mohammad Norouzi:
Learning to Generalize from Sparse and Underspecified Rewards. ICML 2019: 130-140 - [c145]Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans:
Understanding the Impact of Entropy on Policy Optimization. ICML 2019: 151-160 - [c144]Robert Dadashi, Marc G. Bellemare, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans:
The Value Function Polytope in Reinforcement Learning. ICML 2019: 1486-1495 - [c143]Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, Martin Müller:
On Principled Entropy Exploration in Policy Optimization. IJCAI 2019: 3130-3136 - [c142]Martin Mladenov, Ofer Meshi, Jayden Ooi, Dale Schuurmans, Craig Boutilier:
Advantage Amplification in Slowly Evolving Latent-State Environments. IJCAI 2019: 3165-3172 - [c141]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. NeurIPS 2019: 4360-4371 - [c140]Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, Daniel Duckworth:
Invertible Convolutional Flow. NeurIPS 2019: 5636-5646 - [c139]Minmin Chen, Ramki Gummadi, Chris Harris, Dale Schuurmans:
Surrogate Objectives for Batch Policy Optimization in One-step Decision Making. NeurIPS 2019: 8825-8835 - [c138]Chenjun Xiao, Ruitong Huang, Jincheng Mei, Dale Schuurmans, Martin Müller:
Maximum Entropy Monte-Carlo Planning. NeurIPS 2019: 9516-9524 - [c137]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. NeurIPS 2019: 10977-10988 - [i32]Robert Dadashi, Adrien Ali Taïga, Nicolas Le Roux, Dale Schuurmans, Marc G. Bellemare:
The Value Function Polytope in Reinforcement Learning. CoRR abs/1901.11524 (2019) - [i31]Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taïga, Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore, Clare Lyle:
A Geometric Perspective on Optimal Representations for Reinforcement Learning. CoRR abs/1901.11530 (2019) - [i30]Rishabh Agarwal, Chen Liang, Dale Schuurmans, Mohammad Norouzi:
Learning to Generalize from Sparse and Underspecified Rewards. CoRR abs/1902.07198 (2019) - [i29]Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, Dale Schuurmans:
Exponential Family Estimation via Adversarial Dynamics Embedding. CoRR abs/1904.12083 (2019) - [i28]Martin Mladenov, Ofer Meshi, Jayden Ooi, Dale Schuurmans, Craig Boutilier:
Advantage Amplification in Slowly Evolving Latent-State Environments. CoRR abs/1905.13559 (2019) - [i27]Rishabh Agarwal, Dale Schuurmans, Mohammad Norouzi:
Striving for Simplicity in Off-policy Deep Reinforcement Learning. CoRR abs/1907.04543 (2019) - [i26]Junfeng Wen, Russell Greiner, Dale Schuurmans:
Domain Aggregation Networks for Multi-Source Domain Adaptation. CoRR abs/1909.05352 (2019) - [i25]Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, Dale Schuurmans:
AlgaeDICE: Policy Gradient from Arbitrary Experience. CoRR abs/1912.02074 (2019) - [i24]Chenjun Xiao, Yifan Wu, Chen Ma, Dale Schuurmans, Martin Müller:
Learning to Combat Compounding-Error in Model-Based Reinforcement Learning. CoRR abs/1912.11206 (2019) - 2018
- [c136]Aditya Grover, Ramki Gummadi, Miguel Lázaro-Gredilla, Dale Schuurmans, Stefano Ermon:
Variational Rejection Sampling. AISTATS 2018: 823-832 - [c135]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Trust-PCL: An Off-Policy Trust Region Method for Continuous Control. ICLR (Poster) 2018 - [c134]Ofir Nachum, Mohammad Norouzi, George Tucker, Dale Schuurmans:
Smoothed Action Value Functions for Learning Gaussian Policies. ICML 2018: 3689-3697 - [c133]Craig Boutilier, Alon Cohen, Avinatan Hassidim, Yishay Mansour, Ofer Meshi, Martin Mladenov, Dale Schuurmans:
Planning and Learning with Stochastic Action Sets. IJCAI 2018: 4674-4682 - [c132]Tyler Lu, Dale Schuurmans, Craig Boutilier:
Non-delusional Q-learning and value-iteration. NeurIPS 2018: 9971-9981 - [i23]Ofir Nachum, Mohammad Norouzi, George Tucker, Dale Schuurmans:
Smoothed Action Value Functions for Learning Gaussian Policies. CoRR abs/1803.02348 (2018) - [i22]Aditya Grover, Ramki Gummadi, Miguel Lázaro-Gredilla, Dale Schuurmans, Stefano Ermon:
Variational Rejection Sampling. CoRR abs/1804.01712 (2018) - [i21]Craig Boutilier, Alon Cohen, Amit Daniely, Avinatan Hassidim, Yishay Mansour, Ofer Meshi, Martin Mladenov, Dale Schuurmans:
Planning and Learning with Stochastic Action Sets. CoRR abs/1805.02363 (2018) - [i20]Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, Niao He:
Kernel Exponential Family Estimation via Doubly Dual Embedding. CoRR abs/1811.02228 (2018) - [i19]Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, Dale Schuurmans:
Understanding the impact of entropy on policy optimization. CoRR abs/1811.11214 (2018) - 2017
- [j22]Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Generalized Conditional Gradient for Sparse Estimation. J. Mach. Learn. Res. 18: 144:1-144:46 (2017) - [c131]Martin A. Zinkevich, Dale Schuurmans:
Formalizing Anthropomorphism Through Games: A Study in Deep Neural Networks. AAAI Workshops 2017 - [c130]Ofir Nachum, Mohammad Norouzi, Dale Schuurmans:
Improving Policy Gradient by Exploring Under-appreciated Rewards. ICLR (Poster) 2017 - [c129]Martin Mladenov, Craig Boutilier, Dale Schuurmans, Ofer Meshi, Gal Elidan, Tyler Lu:
Logistic Markov Decision Processes. IJCAI 2017: 2486-2493 - [c128]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Bridging the Gap Between Value and Policy Based Reinforcement Learning. NIPS 2017: 2775-2785 - [c127]Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvári:
Multi-view Matrix Factorization for Linear Dynamical System Estimation. NIPS 2017: 7092-7101 - [c126]Martin A. Zinkevich, Alex Davies, Dale Schuurmans:
Holographic Feature Representations of Deep Networks. UAI 2017 - [i18]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Bridging the Gap Between Value and Policy Based Reinforcement Learning. CoRR abs/1702.08892 (2017) - [i17]Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans:
Trust-PCL: An Off-Policy Trust Region Method for Continuous Control. CoRR abs/1707.01891 (2017) - [i16]Tyler Lu, Martin Zinkevich, Craig Boutilier, Binz Roy, Dale Schuurmans:
Safe Exploration for Identifying Linear Systems via Robust Optimization. CoRR abs/1711.11165 (2017) - 2016
- [c125]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. AISTATS 2016: 809-818 - [c124]Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric P. Xing, Dale Schuurmans:
Scalable and Sound Low-Rank Tensor Learning. AISTATS 2016: 1114-1123 - [c123]Dale Schuurmans, Martin Zinkevich:
Deep Learning Games. NIPS 2016: 1678-1686 - [c122]Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans:
Reward Augmented Maximum Likelihood for Neural Structured Prediction. NIPS 2016: 1723-1731 - [e3]Dale Schuurmans, Michael P. Wellman:
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA. AAAI Press 2016, ISBN 978-1-57735-760-5 [contents] - [i15]Siamak Ravanbakhsh, Barnabás Póczos, Jeff G. Schneider, Dale Schuurmans, Russell Greiner:
Stochastic Neural Networks with Monotonic Activation Functions. CoRR abs/1601.00034 (2016) - [i14]Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans:
Reward Augmented Maximum Likelihood for Neural Structured Prediction. CoRR abs/1609.00150 (2016) - [i13]Ofir Nachum, Mohammad Norouzi, Dale Schuurmans:
Improving Policy Gradient by Exploring Under-appreciated Rewards. CoRR abs/1611.09321 (2016) - 2015
- [j21]Mohamed Elgendi, Richard Ribón Fletcher, Ian Norton, Matt Brearley, Derek Abbott, Nigel H. Lovell, Dale Schuurmans:
Frequency analysis of photoplethysmogram and its derivatives. Comput. Methods Programs Biomed. 122(3): 503-512 (2015) - [j20]Mohamed Elgendi, Rich Fletcher, Ian Norton, Matt Brearley, Derek Abbott, Nigel H. Lovell, Dale Schuurmans:
On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress. Sensors 15(10): 24716-24734 (2015) - [c121]Martha White, Junfeng Wen, Michael Bowling, Dale Schuurmans:
Optimal Estimation of Multivariate ARMA Models. AAAI 2015: 3080-3086 - [c120]James Neufeld, Dale Schuurmans, Michael H. Bowling:
Variance Reduction via Antithetic Markov Chains. AISTATS 2015 - [c119]Xin Li, Yuhong Guo, Dale Schuurmans:
Semi-Supervised Zero-Shot Classification with Label Representation Learning. ICCV 2015: 4211-4219 - [c118]Junfeng Wen, Russell Greiner, Dale Schuurmans:
Correcting Covariate Shift with the Frank-Wolfe Algorithm. IJCAI 2015: 1010-1016 - [c117]Farzaneh Mirzazadeh, Siamak Ravanbakhsh, Nan Ding, Dale Schuurmans:
Embedding Inference for Structured Multilabel Prediction. NIPS 2015: 3555-3563 - [c116]Karim T. Abou-Moustafa, Dale Schuurmans:
Generalization in Unsupervised Learning. ECML/PKDD (1) 2015: 300-317 - [c115]Farzaneh Mirzazadeh, Martha White, András György, Dale Schuurmans:
Scalable Metric Learning for Co-Embedding. ECML/PKDD (1) 2015: 625-642 - [i12]Ruitong Huang, Bing Xu, Dale Schuurmans, Csaba Szepesvári:
Learning with a Strong Adversary. CoRR abs/1511.03034 (2015) - 2014
- [c114]Farzaneh Mirzazadeh, Yuhong Guo, Dale Schuurmans:
Convex Co-embedding. AAAI 2014: 1989-1996 - [c113]James Neufeld, András György, Csaba Szepesvári, Dale Schuurmans:
Adaptive Monte Carlo via Bandit Allocation. ICML 2014: 1944-1952 - [c112]Özlem Aslan, Xinhua Zhang, Dale Schuurmans:
Convex Deep Learning via Normalized Kernels. NIPS 2014: 3275-3283 - [i11]James Neufeld, András György, Dale Schuurmans, Csaba Szepesvári:
Adaptive Monte Carlo via Bandit Allocation. CoRR abs/1405.3318 (2014) - [i10]Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Generalized Conditional Gradient for Sparse Estimation. CoRR abs/1410.4828 (2014) - 2013
- [j19]Shaojun Wang, Shaomin Wang, Li Cheng, Russell Greiner, Dale Schuurmans:
Exploiting Syntactic, Semantic, and Lexical Regularities in Language Modeling via Directed Markov Random Fields. Comput. Intell. 29(4): 649-679 (2013) - [c111]Karim T. Abou-Moustafa, Dale Schuurmans, Frank P. Ferrie:
Learning a Metric Space for Neighbourhood Topology Estimation: Application to Manifold Learning. ACML 2013: 341-356 - [c110]Karim T. Abou-Moustafa, Frank P. Ferrie, Dale Schuurmans:
Divergence based graph estimation for manifold learning. GlobalSIP 2013: 447-450 - [c109]Yaoliang Yu, Hao Cheng, Dale Schuurmans, Csaba Szepesvári:
Characterizing the Representer Theorem. ICML (1) 2013: 570-578 - [c108]Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:
Polar Operators for Structured Sparse Estimation. NIPS 2013: 82-90 - [c107]Özlem Aslan, Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Two-Layer Modeling. NIPS 2013: 2985-2993 - [c106]Yuhong Guo, Dale Schuurmans:
Multi-label Classification with Output Kernels. ECML/PKDD (2) 2013: 417-432 - [c105]Yi Shi, Xinhua Zhang, Xiaoping Liao, Guohui Lin, Dale Schuurmans:
Protein-chemical Interaction Prediction via Kernelized Sparse Learning SVM. Pacific Symposium on Biocomputing 2013: 41-52 - [c104]Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Relaxations of Bregman Divergence Clustering. UAI 2013 - [i9]Dale Schuurmans, Finnegan Southey:
Monte Carlo Inference via Greedy Importance Sampling. CoRR abs/1301.3890 (2013) - [i8]Russell Greiner, Adam J. Grove, Dale Schuurmans:
Learning Bayesian Nets that Perform Well. CoRR abs/1302.1542 (2013) - [i7]Hengshuai Yao, Dale Schuurmans:
Reinforcement Ranking. CoRR abs/1303.5988 (2013) - [i6]Hao Cheng, Xinhua Zhang, Dale Schuurmans:
Convex Relaxations of Bregman Divergence Clustering. CoRR abs/1309.6823 (2013) - 2012
- [j18]Yi Shi, Maryam Hasan, Zhipeng Cai, Guohui Lin, Dale Schuurmans:
Linear Coherent Bi-Clustering via Beam Searching and Sample Set Clustering. Discret. Math. Algorithms Appl. 4(2) (2012) - [j17]Jiming Peng, Lopamudra Mukherjee, Vikas Singh, Dale Schuurmans, Linli Xu:
An efficient algorithm for maximal margin clustering. J. Glob. Optim. 52(1): 123-137 (2012) - [j16]Daniel J. Lizotte, Russell Greiner, Dale Schuurmans:
An experimental methodology for response surface optimization methods. J. Glob. Optim. 53(4): 699-736 (2012) - [j15]Shaojun Wang, Dale Schuurmans, Yunxin Zhao:
The Latent Maximum Entropy Principle. ACM Trans. Knowl. Discov. Data 6(2): 8:1-8:42 (2012) - [c103]James Neufeld, Yaoliang Yu, Xinhua Zhang, Ryan Kiros, Dale Schuurmans:
Regularizers versus Losses for Nonlinear Dimensionality Reduction: A Factored View with New Convex Relaxations. ICML 2012 - [c102]Martha White, Yaoliang Yu, Xinhua Zhang, Dale Schuurmans:
Convex Multi-view Subspace Learning. NIPS 2012: 1682-1690 - [c101]Yaoliang Yu, Özlem Aslan, Dale Schuurmans:
A Polynomial-time Form of Robust Regression. NIPS 2012: 2492-2500 - [c100]Xinhua Zhang, Yaoliang Yu, Dale Schuurmans:
Accelerated Training for Matrix-norm Regularization: A Boosting Approach. NIPS 2012: 2915-2923 - [c99]Yuhong Guo, Dale Schuurmans:
Semi-supervised Multi-label Classification - A Simultaneous Large-Margin, Subspace Learning Approach. ECML/PKDD (2) 2012: 355-370 - [c98]Yi Shi, Xiaoping Liao, Xinhua Zhang, Guohui Lin, Dale Schuurmans:
Sparse Learning Based Linear Coherent Bi-clustering. WABI 2012: 346-364 - [c97]Martha White, Dale Schuurmans:
Generalized Optimal Reverse Prediction. AISTATS 2012: 1305-1313 - [i5]Yaoliang Yu, Dale Schuurmans:
Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering. CoRR abs/1202.3772 (2012) - [i4]Yuhong Guo, Dale Schuurmans:
Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. CoRR abs/1206.6832 (2012) - [i3]Yuhong Guo, Dana F. Wilkinson, Dale Schuurmans:
Maximum Margin Bayesian Networks. CoRR abs/1207.1382 (2012) - [i2]Fletcher Lu, Dale Schuurmans:
Monte Carlo Matrix Inversion Policy Evaluation. CoRR abs/1212.2471 (2012) - [i1]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Boltzmann Machine Learning with the Latent Maximum Entropy Principle. CoRR abs/1212.2514 (2012) - 2011
- [j14]Li Cheng, Minglun Gong, Dale Schuurmans, Terry Caelli:
Real-Time Discriminative Background Subtraction. IEEE Trans. Image Process. 20(5): 1401-1414 (2011) - [c96]Yuhong Guo, Dale Schuurmans:
Adaptive Large Margin Training for Multilabel Classification. AAAI 2011: 374-379 - [c95]Xinhua Zhang, Yaoliang Yu, Martha White, Ruitong Huang, Dale Schuurmans:
Convex Sparse Coding, Subspace Learning, and Semi-Supervised Extensions. AAAI 2011: 567-573 - [c94]Yuxi Li, Dale Schuurmans:
MapReduce for Parallel Reinforcement Learning. EWRL 2011: 309-320 - [c93]Wenye Li, Dale Schuurmans:
Modular Community Detection in Networks. IJCAI 2011: 1366-1371 - [c92]Yaoliang Yu, Dale Schuurmans:
Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering. UAI 2011: 778-785 - 2010
- [c91]Yi Shi, Maryam Hasan, Zhipeng Cai, Guohui Lin, Dale Schuurmans:
Linear Coherent Bi-cluster Discovery via Beam Detection and Sample Set Clustering. COCOA (1) 2010: 85-103 - [c90]Shane Bergsma, Dekang Lin, Dale Schuurmans:
Improved Natural Language Learning via Variance-Regularization Support Vector Machines. CoNLL 2010: 172-181 - [c89]Novi Quadrianto, Dale Schuurmans, Alexander J. Smola:
Distributed Flow Algorithms for Scalable Similarity Visualization. ICDM Workshops 2010: 1220-1227 - [c88]Yaoliang Yu, Min Yang, Linli Xu, Martha White, Dale Schuurmans:
Relaxed Clipping: A Global Training Method for Robust Regression and Classification. NIPS 2010: 2532-2540 - [p2]Qin Iris Wang, Dale Schuurmans, Dekang Lin:
Strictly Lexicalised Dependency Parsing. Trends in Parsing Technology 2010: 105-120
2000 – 2009
- 2009
- [c87]Yuhong Guo, Dale Schuurmans:
A Reformulation of Support Vector Machines for General Confidence Functions. ACML 2009: 109-119 - [c86]Yuxi Li, Li Cheng, Dale Schuurmans:
Inference of the structural credit risk model using MLE. CIFEr 2009: 8-13 - [c85]Yi Shi, Zhipeng Cai, Guohui Lin, Dale Schuurmans:
Linear Coherent Bi-cluster Discovery via Line Detection and Sample Majority Voting. COCOA 2009: 73-84 - [c84]Linli Xu, Wenye Li, Dale Schuurmans:
Fast normalized cut with linear constraints. CVPR 2009: 2866-2873 - [c83]Qinfeng Shi, Luping Zhou, Li Cheng, Dale Schuurmans:
Discriminative Maximum Margin Image Object Categorization with Exact Inference. ICIG 2009: 232-237 - [c82]Linli Xu, Martha White, Dale Schuurmans:
Optimal reverse prediction: a unified perspective on supervised, unsupervised and semi-supervised learning. ICML 2009: 1137-1144 - [c81]Novi Quadrianto, Tibério S. Caetano, John Lim, Dale Schuurmans:
Convex Relaxation of Mixture Regression with Efficient Algorithms. NIPS 2009: 1491-1499 - [c80]Yaoliang Yu, Yuxi Li, Dale Schuurmans, Csaba Szepesvári:
A General Projection Property for Distribution Families. NIPS 2009: 2232-2240 - [c79]Yuxi Li, Csaba Szepesvári, Dale Schuurmans:
Learning Exercise Policies for American Options. AISTATS 2009: 352-359 - [c78]Min Yang, Yuxi Li, Dale Schuurmans:
Dual Temporal Difference Learning. AISTATS 2009: 631-638 - [e2]Daphne Koller, Dale Schuurmans, Yoshua Bengio, Léon Bottou:
Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008. Curran Associates, Inc. 2009 [contents] - [e1]Yoshua Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, Aron Culotta:
Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2009, ISBN 9781615679119 [contents] - 2008
- [c77]Qin Iris Wang, Dale Schuurmans, Dekang Lin:
Semi-Supervised Convex Training for Dependency Parsing. ACL 2008: 532-540 - [c76]Yuhong Guo, Dale Schuurmans:
Efficient global optimization for exponential family PCA and low-rank matrix factorization. Allerton 2008: 1100-1107 - [c75]Yuxi Li, Dale Schuurmans:
Policy Iteration for Learning an Exercise Policy for American Options. EWRL 2008: 165-178 - 2007
- [c74]Daniel J. Lizotte, Tao Wang, Michael H. Bowling, Dale Schuurmans:
Automatic Gait Optimization with Gaussian Process Regression. IJCAI 2007: 944-949 - [c73]Qin Iris Wang, Dekang Lin, Dale Schuurmans:
Simple Training of Dependency Parsers via Structured Boosting. IJCAI 2007: 1756-1762 - [c72]Yuhong Guo, Dale Schuurmans:
Discriminative Batch Mode Active Learning. NIPS 2007: 593-600 - [c71]Yuhong Guo, Dale Schuurmans:
Convex Relaxations of Latent Variable Training. NIPS 2007: 601-608 - [c70]Tao Wang, Daniel J. Lizotte, Michael H. Bowling, Dale Schuurmans:
Stable Dual Dynamic Programming. NIPS 2007: 1569-1576 - [c69]Yuhong Guo, Dale Schuurmans:
Learning Gene Regulatory Networks via Globally Regularized Risk Minimization. RECOMB-CG 2007: 83-95 - 2006
- [j13]Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans:
Constraint-based optimization and utility elicitation using the minimax decision criterion. Artif. Intell. 170(8-9): 686-713 (2006) - [j12]Tibério S. Caetano, Terry Caelli, Dale Schuurmans, Dante Augusto Couto Barone:
Graphical Models and Point Pattern Matching. IEEE Trans. Pattern Anal. Mach. Intell. 28(10): 1646-1663 (2006) - [c68]Linli Xu, Koby Crammer, Dale Schuurmans:
Robust Support Vector Machine Training via Convex Outlier Ablation. AAAI 2006: 536-542 - [c67]Tao Wang, Pascal Poupart, Michael H. Bowling, Dale Schuurmans:
Compact, Convex Upper Bound Iteration for Approximate POMDP Planning. AAAI 2006: 1245-1252 - [c66]Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, Dale Schuurmans:
Semi-Supervised Conditional Random Fields for Improved Sequence Segmentation and Labeling. ACL 2006 - [c65]Li Cheng, Shaojun Wang, Dale Schuurmans, Terry Caelli, S. V. N. Vishwanathan:
An Online Discriminative Approach to Background Subtraction. AVSS 2006: 2 - [c64]Qin Iris Wang, Colin Cherry, Daniel J. Lizotte, Dale Schuurmans:
Improved Large Margin Dependency Parsing via Local Constraints and Laplacian Regularization. CoNLL 2006: 21-28 - [c63]Shaojun Wang, Shaomin Wang, Li Cheng, Russell Greiner, Dale Schuurmans:
Stochastic Analysis of Lexical and Semantic Enhanced Structural Language Model. ICGI 2006: 97-111 - [c62]Linli Xu, Dana F. Wilkinson, Finnegan Southey, Dale Schuurmans:
Discriminative unsupervised learning of structured predictors. ICML 2006: 1057-1064 - [c61]Li Cheng, S. V. N. Vishwanathan, Dale Schuurmans, Shaojun Wang, Terry Caelli:
implicit Online Learning with Kernels. NIPS 2006: 249-256 - [c60]Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, Russell Greiner:
Learning to Model Spatial Dependency: Semi-Supervised Discriminative Random Fields. NIPS 2006: 793-800 - [c59]Jiayuan Huang, Tingshao Zhu, Dale Schuurmans:
Web Communities Identification from Random Walks. PKDD 2006: 187-198 - [c58]Jiayuan Huang, Tingshao Zhu, Russell Greiner, Dengyong Zhou, Dale Schuurmans:
Information Marginalization on Subgraphs. PKDD 2006: 199-210 - [c57]Yuhong Guo, Dale Schuurmans:
Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. UAI 2006 - [p1]Dale Schuurmans, Finnegan Southey, Dana F. Wilkinson, Yuhong Guo:
Metric-Based Approaches for Semi-Supervised Regression and Classification. Semi-Supervised Learning 2006: 420-451 - 2005
- [j11]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Combining Statistical Language Models via the Latent Maximum Entropy Principle. Mach. Learn. 60(1-3): 229-250 (2005) - [c56]Linli Xu, Dale Schuurmans:
Unsupervised and Semi-Supervised Multi-Class Support Vector Machines. AAAI 2005: 904-910 - [c55]Ali Ghodsi, Jiayuan Huang, Finnegan Southey, Dale Schuurmans:
Tangent-Corrected Embedding. CVPR (1) 2005: 518-525 - [c54]Li Cheng, Feng Jiao, Dale Schuurmans, Shaojun Wang:
Variational Bayesian image modelling. ICML 2005: 129-136 - [c53]Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng:
Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. ICML 2005: 948-955 - [c52]Tao Wang, Daniel J. Lizotte, Michael H. Bowling, Dale Schuurmans:
Bayesian sparse sampling for on-line reward optimization. ICML 2005: 956-963 - [c51]Yuhong Guo, Russell Greiner, Dale Schuurmans:
Learning Coordination Classifiers. IJCAI 2005: 714-721 - [c50]Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans:
Regret-based Utility Elicitation in Constraint-based Decision Problems. IJCAI 2005: 929-934 - [c49]Qin Iris Wang, Dale Schuurmans, Dekang Lin:
Strictly Lexical Dependency Parsing. IWPT 2005: 152-159 - [c48]Yuhong Guo, Dana F. Wilkinson, Dale Schuurmans:
Maximum Margin Bayesian Networks. UAI 2005: 233-242 - 2004
- [j10]Fuchun Peng, Dale Schuurmans, Shaojun Wang:
Augmenting Naive Bayes Classifiers with Statistical Language Models. Inf. Retr. 7(3-4): 317-345 (2004) - [j9]Xiangji Huang, Fuchun Peng, Aijun An, Dale Schuurmans:
Dynamic Web log session identification with statistical language models. J. Assoc. Inf. Sci. Technol. 55(14): 1290-1303 (2004) - [j8]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Learning mixture models with the regularized latent maximum entropy principle. IEEE Trans. Neural Networks 15(4): 903-916 (2004) - [c47]Ali Ghodsi, Jiayuan Huang, Dale Schuurmans:
Transformation-Invariant Embedding for Image Analysis. ECCV (4) 2004: 519-530 - [c46]Shaojun Wang, Shaomin Wang, Russell Greiner, Dale Schuurmans, Li Cheng:
Exploiting syntactic, semantic and lexical regularities in language modeling via directed Markov random fields. ISCSLP 2004: 305-308 - [c45]Linli Xu, James Neufeld, Bryce Larson, Dale Schuurmans:
Maximum Margin Clustering. NIPS 2004: 1537-1544 - 2003
- [j7]Xiangji Huang, Fuchun Peng, Dale Schuurmans, Nick Cercone, Stephen E. Robertson:
Applying Machine Learning to Text Segmentation for Information Retrieval. Inf. Retr. 6(3-4): 333-362 (2003) - [j6]Ali Ghodsi, Dale Schuurmans:
Automatic basis selection techniques for RBF networks. Neural Networks 16(5-6): 809-816 (2003) - [c44]Xiangji Huang, Fuchun Peng, Aijun An, Dale Schuurmans, Nick Cercone:
Session Boundary Detection for Association Rule Learning Using n-Gram Language Models. AI 2003: 237-251 - [c43]Fletcher Lu, Dale Schuurmans:
Model-Based Least-Squares Policy Evaluation. AI 2003: 342-352 - [c42]Shaojun Wang, Dale Schuurmans, Fuchun Peng:
Latent Maximum Entropy Approach for Semantic N-gram Language Modeling. AISTATS 2003: 316-322 - [c41]Shaojun Wang, Dale Schuurmans:
Learning Continuous Latent Variable Models with Bregman Divergences. ALT 2003: 190-204 - [c40]Craig Boutilier, Relu Patrascu, Pascal Poupart, Dale Schuurmans:
Constraint-Based Optimization with the Minimax Decision Criterion. CP 2003: 168-182 - [c39]Feng Jiao, Stan Z. Li, Heung-Yeung Shum, Dale Schuurmans:
Face Alignment Using Statistical Models and Wavelet Features. CVPR (1) 2003: 321-327 - [c38]Fuchun Peng, Dale Schuurmans, Vlado Keselj, Shaojun Wang:
Language Independent Authorship Attribution with Character Level N-Grams. EACL 2003: 267-274 - [c37]Fuchun Peng, Dale Schuurmans:
Combining Naive Bayes and n-Gram Language Models for Text Classification. ECIR 2003: 335-350 - [c36]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Semantic n-gram language modeling with the latent maximum entropy principle. ICASSP (1) 2003: 376-379 - [c35]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Learning Mixture Models with the Latent Maximum Entropy Principle. ICML 2003: 784-791 - [c34]Fuchun Peng, Xiangji Huang, Dale Schuurmans, Shaojun Wang:
Text classification in Asian languages without word segmentation. IRAL 2003: 41-48 - [c33]Fuchun Peng, Dale Schuurmans, Shaojun Wang:
Language and Task Independent Text Categorization with Simple Language Models. HLT-NAACL 2003 - [c32]Fletcher Lu, Dale Schuurmans:
Monte Carlo Matrix Inversion Policy Evaluation. UAI 2003: 386-393 - [c31]Shaojun Wang, Dale Schuurmans, Fuchun Peng, Yunxin Zhao:
Boltzmann Machine Learning with the Latent Maximum Entropy Principle. UAI 2003: 567-574 - 2002
- [j5]Yoshua Bengio, Dale Schuurmans:
Guest Introduction: Special Issue on New Methods for Model Selection and Model Combination. Mach. Learn. 48(1-3): 5-7 (2002) - [j4]Dale Schuurmans, Finnegan Southey:
Metric-Based Methods for Adaptive Model Selection and Regularization. Mach. Learn. 48(1-3): 51-84 (2002) - [c30]Gal Elidan, Matan Ninio, Nir Friedman, Dale Schuurmans:
Data Perturbation for Escaping Local Maxima in Learning. AAAI/IAAI 2002: 132-139 - [c29]Relu Patrascu, Pascal Poupart, Dale Schuurmans, Craig Boutilier, Carlos Guestrin:
Greedy Linear Value-Approximation for Factored Markov Decision Processes. AAAI/IAAI 2002: 285-291 - [c28]Pascal Poupart, Craig Boutilier, Relu Patrascu, Dale Schuurmans:
Piecewise Linear Value Function Approximation for Factored MDPs. AAAI/IAAI 2002: 292-299 - [c27]Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone:
Investigating the Relationship between Word Segmentation Performance and Retrieval Performance in Chinese IR. COLING 2002 - [c26]Carlos Guestrin, Relu Patrascu, Dale Schuurmans:
Algorithm-Directed Exploration for Model-Based Reinforcement Learning in Factored MDPs. ICML 2002: 235-242 - [c25]Fletcher Lu, Relu Patrascu, Dale Schuurmans:
Investigating the Maximum Likelihood Alternative to TD(lambda). ICML 2002: 403-410 - [c24]Finnegan Southey, Dale Schuurmans, Ali Ghodsi:
Regularized Greedy Importance Sampling. NIPS 2002: 753-760 - [c23]Xiangji Huang, Fuchun Peng, Dale Schuurmans, Nick Cercone:
Waterloo at NTCIR-3: Using Self-supervised Word Segmentation. NTCIR 2002 - [c22]Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone, Stephen E. Robertson:
Using self-supervised word segmentation in Chinese information retrieval. SIGIR 2002: 349-350 - 2001
- [j3]Dale Schuurmans, Finnegan Southey:
Local search characteristics of incomplete SAT procedures. Artif. Intell. 132(2): 121-150 (2001) - [j2]Adam J. Grove, Nick Littlestone, Dale Schuurmans:
General Convergence Results for Linear Discriminant Updates. Mach. Learn. 43(3): 173-210 (2001) - [c21]Fuchun Peng, Dale Schuurmans:
Self-Supervised Chinese Word Segmentation. IDA 2001: 238-247 - [c20]Dale Schuurmans, Finnegan Southey, Robert C. Holte:
The Exponentiated Subgradient Algorithm for Heuristic Boolean Programming. IJCAI 2001: 334-341 - [c19]Dale Schuurmans, Relu Patrascu:
Direct value-approximation for factored MDPs. NIPS 2001: 1579-1586 - [c18]Fuchun Peng, Dale Schuurmans:
A Simple Closed-Class/Open-Class Factorization for Improved Language Modeling. NLPRS 2001: 145-152 - [c17]Fuchun Peng, Dale Schuurmans:
A Hierarchical EM Approach to Word Segmentation. NLPRS 2001: 475-480 - 2000
- [c16]Dale Schuurmans, Finnegan Southey:
Local Search Characteristics of Incomplete SAT Procedures. AAAI/IAAI 2000: 297-302 - [c15]Dale Schuurmans, Finnegan Southey:
An Adaptive Regularization Criterion for Supervised Learning. ICML 2000: 847-854 - [c14]Dale Schuurmans, Finnegan Southey:
Monte Carlo inference via greedy importance sampling. UAI 2000: 523-532
1990 – 1999
- 1999
- [c13]Dale Schuurmans, Lloyd G. Greenwald:
Efficient exploration for optimizing immediate reward. AAAI/IAAI 1999: 385-392 - [c12]Dale Schuurmans:
Greedy Importance Sampling. NIPS 1999: 596-602 - 1998
- [c11]Adam J. Grove, Dale Schuurmans:
Boosting in the Limit: Maximizing the Margin of Learned Ensembles. AAAI/IAAI 1998: 692-699 - 1997
- [j1]Dale Schuurmans:
Characterizing Rational Versus Exponential learning Curves. J. Comput. Syst. Sci. 55(1): 140-160 (1997) - [c10]Dale Schuurmans:
A New Metric-Based Approach to Model Selection. AAAI/IAAI 1997: 552-558 - [c9]Adam J. Grove, Nick Littlestone, Dale Schuurmans:
General Convergence Results for Linear Discriminant Updates. COLT 1997: 171-183 - [c8]Dale Schuurmans, Lyle H. Ungar, Dean P. Foster:
Characterizing the generalization performance of model selection strategies. ICML 1997: 340-348 - [c7]Russell Greiner, Adam J. Grove, Dale Schuurmans:
Learning Bayesian Nets that Perform Well. UAI 1997: 198-207 - 1996
- [b1]Dale Schuurmans:
Effective classification learning. University of Toronto, Canada, 1996 - 1995
- [c6]Dale Schuurmans, Russell Greiner:
Sequential PAC Learning. COLT 1995: 377-384 - [c5]Dale Schuurmans:
Characterizing rational versus exponential learning curves. EuroCOLT 1995: 272-286 - [c4]Dale Schuurmans, Russell Greiner:
Practical PAC Learning. IJCAI 1995: 1169-1177 - 1992
- [c3]Russell Greiner, Dale Schuurmans:
Learning an Optimally Accurate Representation System. ECAI Workshop on Knowledge Representation and Reasoning 1992: 145-159 - [c2]Russell Greiner, Dale Schuurmans:
Learning Useful Horn Approximations. KR 1992: 383-392
1980 – 1989
- 1989
- [c1]Dale Schuurmans, Jonathan Schaeffer:
Representational Difficulties with Classifier Systems. ICGA 1989: 328-333
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:18 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint