Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

About: Path graph

An Entity of Type: SocialGroup107950920, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order v1, v2, …, vn such that the edges are {vi, vi+1} where i = 1, 2, …, n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005).

Property Value
dbo:abstract
  • Ein linearer Graph oder Pfadgraph ist ein Graph, der nur aus einem Pfad besteht. Lineare Graphen sind einfache Beispiele für Bäume. Sie haben keine Verzweigungen, sodass die mittleren Knoten den Grad 2, und die Endknoten den Grad 1 haben. Der lineare Graph mit Knoten wird mit bezeichnet. (de)
  • En teoría de grafos, un grafo camino es un grafo cuyos vértices forman un camino. El camino de cualquier grafo es un subgrafo que da como resultado un grafo camino. (es)
  • In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order v1, v2, …, vn such that the edges are {vi, vi+1} where i = 1, 2, …, n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are often important in their role as subgraphs of other graphs, in which case they are called paths in that graph. A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). (en)
  • En théorie des graphes, un graphe chemin ou graphe chaîne (en anglais path graph) est un arbre où chaque nœud est de degré au plus deux. (fr)
  • 그래프 이론에서 경로 그래프(經路graph, 영어: path graph)는 모든 꼭짓점의 차수가 2 이하인 나무이다. (ko)
  • Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром. (ru)
  • No campo da matemática da teoria dos grafos, um grafo caminho ou grafo linear é um exemplo particularmente simples de uma árvore, ou seja, uma árvore com dois ou mais vértices que não tem ramificações, ou seja, contém somente vértices de grau 2 e 1. Em particular, ela tem dois vértices terminais (vértices que têm grau 1), enquanto todos os outros (se houver) têm grau 2. (pt)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4587190 (xsd:integer)
dbo:wikiPageLength
  • 3259 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1094305224 (xsd:integer)
dbo:wikiPageWikiLink
dbp:automorphisms
  • 2 (xsd:integer)
dbp:chromaticIndex
  • 2 (xsd:integer)
dbp:chromaticNumber
  • 2 (xsd:integer)
dbp:imageCaption
  • A path graph on 6 vertices (en)
dbp:name
  • Path graph (en)
dbp:properties
dbp:title
  • Path Graph (en)
dbp:urlname
  • PathGraph (en)
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Ein linearer Graph oder Pfadgraph ist ein Graph, der nur aus einem Pfad besteht. Lineare Graphen sind einfache Beispiele für Bäume. Sie haben keine Verzweigungen, sodass die mittleren Knoten den Grad 2, und die Endknoten den Grad 1 haben. Der lineare Graph mit Knoten wird mit bezeichnet. (de)
  • En teoría de grafos, un grafo camino es un grafo cuyos vértices forman un camino. El camino de cualquier grafo es un subgrafo que da como resultado un grafo camino. (es)
  • En théorie des graphes, un graphe chemin ou graphe chaîne (en anglais path graph) est un arbre où chaque nœud est de degré au plus deux. (fr)
  • 그래프 이론에서 경로 그래프(經路graph, 영어: path graph)는 모든 꼭짓점의 차수가 2 이하인 나무이다. (ko)
  • Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром. (ru)
  • No campo da matemática da teoria dos grafos, um grafo caminho ou grafo linear é um exemplo particularmente simples de uma árvore, ou seja, uma árvore com dois ou mais vértices que não tem ramificações, ou seja, contém somente vértices de grau 2 e 1. Em particular, ela tem dois vértices terminais (vértices que têm grau 1), enquanto todos os outros (se houver) têm grau 2. (pt)
  • In the mathematical field of graph theory, a path graph or linear graph is a graph whose vertices can be listed in the order v1, v2, …, vn such that the edges are {vi, vi+1} where i = 1, 2, …, n − 1. Equivalently, a path with at least two vertices is connected and has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See, for example, Bondy and Murty (1976), Gibbons (1985), or Diestel (2005). (en)
rdfs:label
  • Linearer Graph (de)
  • Grafo camino (es)
  • Graphe chemin (fr)
  • 경로 그래프 (ko)
  • Path graph (en)
  • Grafo caminho (pt)
  • Путь (теория графов) (ru)
  • Шлях (граф) (uk)
owl:differentFrom
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:differentFrom of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License