Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

About: Root system

An Entity of Type: aircraft, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory.

Property Value
dbo:abstract
  • في الرياضيات، النظام الجذري (بالإنجليزية: Root system)‏ هو تشكيل من الأشعة في الفضاء الإقليدي، يحقق خواصا هندسية معينة. هذا المصطلح ذو أهمية خاصة نظرية زمرة لاي. (ar)
  • Wurzelsysteme dienen in der Mathematik als Hilfsmittel zur Klassifikation der endlichen und der endlichdimensionalen halbeinfachen komplexen Lie-Algebren. (de)
  • Στα μαθηματικά, ένα σύστημα ριζών είναι μια διαμόρφωση από διανύσματα σε έναν Ευκλείδειο χώρο όπου ικανοποιούνται οι βασικές γεωμετρικές ιδιότητες. Η έννοια είναι εδραιωτική στις και στην . Από τότε που οι ομάδες Lie (και κάποια ανάλογη όπως αλγεβρική ομάδα) και Άλγεβρα Lie έγιναν σημαντικές σε πολλούς τομείς των μαθηματικών κατά τη διάρκεια του εικοστού αιώνα, η προφανής ειδική φύση των συστημάτων ριζών διαψεύδει τον αριθμό των περιοχών όπου αυτά εφαρμόζονται. Ακόμη, το σχέδιο ταξινόμησης των συστημάτων ριζών , από τα , συμβαίνει στο κομμάτι των μαθηματικών που δεν έχει καμία φανερή σύνδεση στη θεωρία Lie (όπως ). Τέλος, τα συστήματα ριζών είναι σημαντικά για τους δικούς τους λόγους, όπως στη θεωρία γραφημάτων στη μελέτη των ιδιοδιανυσμάτων. (el)
  • En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie desgroupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués. Par ailleurs, le schéma de classification des systèmes de racines, par les diagrammes de Dynkin, apparaît dans des parties des mathématiques sans aucune connexion manifeste avec les groupes de Lie (telle que la théorie des singularités). (fr)
  • In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. (en)
  • 数学において,ルート系(英: root system,仏: système de racines)とはある幾何学的な性質を満たすユークリッド空間のベクトルの配置である.これはリー群やリー環の理論において基本的な概念である.リー群(や代数群のような類似物)やリー環は20世紀の間に数学の多くの部分で重要になってきたから,ルート系の一見すると特別な性質に反してそれらは多くの分野に応用される.さらに,ディンキン図形によるルート系の分類体系は(のような)リー理論とあからさまなつながりの全くない数学の分野において現れる.最後に,ルート系はスペクトルグラフ理論におけるように,それ自身重要である. (ja)
  • ( 이 문서는 수학에서 리 대수를 분류하는 벡터의 집합에 관한 것입니다. 식물학에서 식물의 뿌리들의 구조에 대해서는 뿌리 문서를, 대한민국의 지명에 대해서는 근계리 문서를 참고하십시오.) 리 군 이론에서, 근계(根系, 영어: root system)는 일련의 기하학적 성질을 만족하는 유한 차원 벡터의 집합이다. 근계의 원소인 벡터는 근(根, 영어: root)이라고 부른다. 주어진 근계에 대하여 특정 성질을 만족하는 부분집합인 단순근(單純根, 영어: simple root)의 집합을 고를 수 있고, 이를 딘킨 도표(영어: Dynkin diagram)로 나타내어 분류할 수 있다. 반단순 리 군에 근계를 대응시킬 수 있으며, 이를 통해 반단순 리 군들을 분류할 수 있다. 모든 근계는 기약 근계(旣約根系, 영어: irreducible root system)의 합으로 나타낼 수 있다. 기약 근계(의 동형류)는 복소수체 위의 단순 리 대수(의 동형류)와 일대일로 대응한다. (ko)
  • In de groepentheorie en de meetkunde, deelgebieden van de wiskunde, is een wortelsysteem een configuratie van vectoren in een Euclidische ruimte, die voldoet aan bepaalde meetkundige eigenschappen. Het concept is fundamenteel in de theorie van de Lie-groepen en de Lie-algebra's. Aangezien Lie-groepen (en sommige analoga ervan, zoals algebraïsche groepen) en Lie-algebra's in de twintigste eeuw belangrijk zijn geworden in veel deelgebieden van de wiskunde, logenstraft het ogenschijnlijk specifieke karakter van het wortelsysteem het grote aantal gebieden, waarbinnen het "wortelsysteem"-concept wordt toegepast. Verder komt het classificatieschema voor wortelsystemen, door middel van , in deelgebieden van de wiskunde, die geen nauwe relatie hebben met de Lie-theorie (zoals de ). Ten slotte zijn wortelsystemen ook op zichzelf belangrijk, zoals in de grafentheorie en in de studie van eigenwaarden. (nl)
  • In matematica, un sistema di radici è una configurazione di vettori in uno spazio euclideo che soddisfa determinate proprietà geometriche. Il concetto è fondamentale nella teoria dei gruppi di Lie e delle algebre di Lie, in particolare nella teoria della classificazione e della rappresentazione delle algebre di Lie semisemplici. Poiché i gruppi di Lie (e alcuni analoghi come i gruppi algebrici) e le algebre di Lie sono diventati importanti in molte parti della matematica durante il ventesimo secolo, a dispetto della loro natura apparentemente particolare, i sistemi di radici vengono applicati in numerosi campi della matematica. Inoltre, lo schema di classificazione per i sistemi di radici, per mezzo dei diagrammi di Dynkin, si verifica in parti della matematica senza un collegamento palese con la teoria di Lie (come la teoria delle singolarità). Infine, i sistemi di radici sono importanti di per sé, come nella . (it)
  • Układ pierwiastkowy – skończony zbiór wektorów przestrzeni wektorowej nad ciałem spełniający następujące warunki: 1. * nie zawiera wektora zerowego i przestrzeń 2. * dla każdego istnieje taki element gdzie jest przestrzenią sprzężoną z że i endomorfizm przestrzeni odwzorowuje w siebie. 3. * dla każdych (pl)
  • У математиці система коренів (коренева система) — це конфігурація векторів в евклідовому просторі, що задовольняє певним геометричним властивостям. Ця концепція є фундаментальною в теорії груп Лі. З тих пір як групи Лі (і деякі інші аналоги, такі як алгебричні групи) протягом двадцятого століття з'явилися в багатьох розділах математики.Більш того, класифікація систем коренів за схемами зустрічається в розділах математики, не пов'язаних явно з групами Лі (наприклад, в ). (uk)
  • 在數學中,根系是歐幾里得空間中滿足某些公理的向量配置。根系在李群、李代數與代數群理論中格外重要;而根系分類的主要工具──鄧肯圖,也見諸等與李群並無顯著關係的學科。 (zh)
  • Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам. Эта концепция является фундаментальной в теории групп Ли и алгебр Ли. Диаграммы Коксетера — Дынкина, использующиеся при классификации систем корней, встречается в разделах математики, не связанных явно с группами Ли, например, в теории сингулярностей. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 277087 (xsd:integer)
dbo:wikiPageLength
  • 52359 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124676088 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • في الرياضيات، النظام الجذري (بالإنجليزية: Root system)‏ هو تشكيل من الأشعة في الفضاء الإقليدي، يحقق خواصا هندسية معينة. هذا المصطلح ذو أهمية خاصة نظرية زمرة لاي. (ar)
  • Wurzelsysteme dienen in der Mathematik als Hilfsmittel zur Klassifikation der endlichen und der endlichdimensionalen halbeinfachen komplexen Lie-Algebren. (de)
  • Στα μαθηματικά, ένα σύστημα ριζών είναι μια διαμόρφωση από διανύσματα σε έναν Ευκλείδειο χώρο όπου ικανοποιούνται οι βασικές γεωμετρικές ιδιότητες. Η έννοια είναι εδραιωτική στις και στην . Από τότε που οι ομάδες Lie (και κάποια ανάλογη όπως αλγεβρική ομάδα) και Άλγεβρα Lie έγιναν σημαντικές σε πολλούς τομείς των μαθηματικών κατά τη διάρκεια του εικοστού αιώνα, η προφανής ειδική φύση των συστημάτων ριζών διαψεύδει τον αριθμό των περιοχών όπου αυτά εφαρμόζονται. Ακόμη, το σχέδιο ταξινόμησης των συστημάτων ριζών , από τα , συμβαίνει στο κομμάτι των μαθηματικών που δεν έχει καμία φανερή σύνδεση στη θεωρία Lie (όπως ). Τέλος, τα συστήματα ριζών είναι σημαντικά για τους δικούς τους λόγους, όπως στη θεωρία γραφημάτων στη μελέτη των ιδιοδιανυσμάτων. (el)
  • En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie desgroupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués. Par ailleurs, le schéma de classification des systèmes de racines, par les diagrammes de Dynkin, apparaît dans des parties des mathématiques sans aucune connexion manifeste avec les groupes de Lie (telle que la théorie des singularités). (fr)
  • In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups (and some analogues such as algebraic groups) and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory (such as singularity theory). Finally, root systems are important for their own sake, as in spectral graph theory. (en)
  • 数学において,ルート系(英: root system,仏: système de racines)とはある幾何学的な性質を満たすユークリッド空間のベクトルの配置である.これはリー群やリー環の理論において基本的な概念である.リー群(や代数群のような類似物)やリー環は20世紀の間に数学の多くの部分で重要になってきたから,ルート系の一見すると特別な性質に反してそれらは多くの分野に応用される.さらに,ディンキン図形によるルート系の分類体系は(のような)リー理論とあからさまなつながりの全くない数学の分野において現れる.最後に,ルート系はスペクトルグラフ理論におけるように,それ自身重要である. (ja)
  • ( 이 문서는 수학에서 리 대수를 분류하는 벡터의 집합에 관한 것입니다. 식물학에서 식물의 뿌리들의 구조에 대해서는 뿌리 문서를, 대한민국의 지명에 대해서는 근계리 문서를 참고하십시오.) 리 군 이론에서, 근계(根系, 영어: root system)는 일련의 기하학적 성질을 만족하는 유한 차원 벡터의 집합이다. 근계의 원소인 벡터는 근(根, 영어: root)이라고 부른다. 주어진 근계에 대하여 특정 성질을 만족하는 부분집합인 단순근(單純根, 영어: simple root)의 집합을 고를 수 있고, 이를 딘킨 도표(영어: Dynkin diagram)로 나타내어 분류할 수 있다. 반단순 리 군에 근계를 대응시킬 수 있으며, 이를 통해 반단순 리 군들을 분류할 수 있다. 모든 근계는 기약 근계(旣約根系, 영어: irreducible root system)의 합으로 나타낼 수 있다. 기약 근계(의 동형류)는 복소수체 위의 단순 리 대수(의 동형류)와 일대일로 대응한다. (ko)
  • Układ pierwiastkowy – skończony zbiór wektorów przestrzeni wektorowej nad ciałem spełniający następujące warunki: 1. * nie zawiera wektora zerowego i przestrzeń 2. * dla każdego istnieje taki element gdzie jest przestrzenią sprzężoną z że i endomorfizm przestrzeni odwzorowuje w siebie. 3. * dla każdych (pl)
  • У математиці система коренів (коренева система) — це конфігурація векторів в евклідовому просторі, що задовольняє певним геометричним властивостям. Ця концепція є фундаментальною в теорії груп Лі. З тих пір як групи Лі (і деякі інші аналоги, такі як алгебричні групи) протягом двадцятого століття з'явилися в багатьох розділах математики.Більш того, класифікація систем коренів за схемами зустрічається в розділах математики, не пов'язаних явно з групами Лі (наприклад, в ). (uk)
  • 在數學中,根系是歐幾里得空間中滿足某些公理的向量配置。根系在李群、李代數與代數群理論中格外重要;而根系分類的主要工具──鄧肯圖,也見諸等與李群並無顯著關係的學科。 (zh)
  • Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам. Эта концепция является фундаментальной в теории групп Ли и алгебр Ли. Диаграммы Коксетера — Дынкина, использующиеся при классификации систем корней, встречается в разделах математики, не связанных явно с группами Ли, например, в теории сингулярностей. (ru)
  • In matematica, un sistema di radici è una configurazione di vettori in uno spazio euclideo che soddisfa determinate proprietà geometriche. Il concetto è fondamentale nella teoria dei gruppi di Lie e delle algebre di Lie, in particolare nella teoria della classificazione e della rappresentazione delle algebre di Lie semisemplici. Poiché i gruppi di Lie (e alcuni analoghi come i gruppi algebrici) e le algebre di Lie sono diventati importanti in molte parti della matematica durante il ventesimo secolo, a dispetto della loro natura apparentemente particolare, i sistemi di radici vengono applicati in numerosi campi della matematica. Inoltre, lo schema di classificazione per i sistemi di radici, per mezzo dei diagrammi di Dynkin, si verifica in parti della matematica senza un collegamento palese (it)
  • In de groepentheorie en de meetkunde, deelgebieden van de wiskunde, is een wortelsysteem een configuratie van vectoren in een Euclidische ruimte, die voldoet aan bepaalde meetkundige eigenschappen. Het concept is fundamenteel in de theorie van de Lie-groepen en de Lie-algebra's. Aangezien Lie-groepen (en sommige analoga ervan, zoals algebraïsche groepen) en Lie-algebra's in de twintigste eeuw belangrijk zijn geworden in veel deelgebieden van de wiskunde, logenstraft het ogenschijnlijk specifieke karakter van het wortelsysteem het grote aantal gebieden, waarbinnen het "wortelsysteem"-concept wordt toegepast. Verder komt het classificatieschema voor wortelsystemen, door middel van , in deelgebieden van de wiskunde, die geen nauwe relatie hebben met de Lie-theorie (zoals de ). Ten slotte zijn (nl)
rdfs:label
  • نظام جذري (ar)
  • Wurzelsystem (de)
  • Συστήματα ριζών (el)
  • Système de racines (fr)
  • Sistema di radici (it)
  • 근계 (ko)
  • ルート系 (ja)
  • Wortelsysteem (nl)
  • Układ pierwiastkowy (pl)
  • Root system (en)
  • Система корней (ru)
  • Система коренів (uk)
  • 根系 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License