Likelihood-Quotienten-Test
Der Likelihood-Quotienten-Test (kurz LQT), auch Plausibilitätsquotiententest (englisch likelihood-ratio test), ist ein statistischer Test, der zu den typischen Hypothesentests in parametrischen Modellen gehört. Viele klassische Tests wie der F-Test für den Varianzenquotienten oder der Zwei-Stichproben-t-Test lassen sich als Beispiele für Likelihood-Quotienten-Tests interpretieren. Einfachstes Beispiel eines Likelihood-Quotienten-Tests ist der Neyman-Pearson-Test.
Definition
BearbeitenFormal betrachtet man das typische parametrische Testproblem: Gegeben ist eine Grundmenge von Wahrscheinlichkeitsverteilungen , abhängig von einem unbekannten Parameter , der aus einer bekannten Grundmenge stammt. Als Nullhypothese soll getestet werden, ob der Parameter zu einer echten Teilmenge gehört. Also:
- .
Die Alternative lautet entsprechend:
- ,
wobei das Komplement zu in bezeichnet.
Die beobachteten Daten sind Realisierungen von Zufallsvariablen , die jeweils die (unbekannte) Verteilung besitzen und stochastisch unabhängig sind.
Der Begriff des Likelihood-Quotienten-Tests suggeriert bereits, dass die Entscheidung des Tests auf der Bildung eines Likelihood-Quotienten bzw. Plausibilitätsquotienten (Quotient zweier Likelihood-Funktionen bzw. Plausibilitätsfunktionen) beruht. Man geht dabei so vor, dass man ausgehend von den Daten und den zu den einzelnen Parametern gehörenden Dichtefunktionen den folgenden Ausdruck berechnet:
- .
Heuristisch gesprochen: Man bestimmt anhand der Daten zunächst den Parameter aus der gegebenen Grundmenge, der die größte Wahrscheinlichkeit dafür liefert, dass die gefundenen Daten gemäß der Verteilung realisiert worden sind. Der Wert der Dichtefunktion bezüglich dieses Parameters wird dann als repräsentativ für die gesamte Menge gesetzt. Im Zähler betrachtet man als Grundmenge den Raum der Nullhypothese, also ; für den Nenner betrachtet man die gesamte Grundmenge .
Es lässt sich intuitiv schließen: Je größer der Quotient ist, desto schwächer ist die Evidenz gegen . Ein Wert von in der Nähe von Eins bedeutet, dass anhand der Daten kein großer Unterschied zwischen den beiden Parametermengen und zu erkennen ist. Die Nullhypothese sollte in solchen Fällen also nicht verworfen werden.
Demnach wird bei einem Likelihood-Quotienten-Test die Hypothese zum Niveau abgelehnt, falls
gilt. Hierbei ist der kritische Wert so zu wählen, dass gilt.
Die konkrete Bestimmung dieses kritischen Werts ist in der Regel problematisch.
Beispiel 1
BearbeitenFür unabhängige Zufallsvariablen , die jeweils eine Normalverteilung mit bekannter Varianz und unbekanntem Erwartungswert besitzen, ergibt sich für das Testproblem gegen mit der folgende Likelihood-Quotient:
mit der von den konkreten Daten unabhängigen Konstanten . Man erhält dann, dass äquivalent zur Ungleichung
ist. Dies liefert als Resultat den bekannten Gauß-Test; man wählt , wobei das -Quantil einer Standardnormalverteilung bezeichnet.
Approximation der Likelihood-Quotienten-Funktion durch eine Chi-Quadrat-Verteilung
BearbeitenUnter bestimmten Voraussetzungen lässt sich die im Allgemeinen schwierig zu betrachtende Teststatistik durch Chi-Quadrat-verteilte Zufallsvariablen annähern, so dass sich vergleichsweise leicht asymptotische Tests herleiten lassen. In der Regel ist das möglich, wenn die Nullhypothese sich durch eine lineare Parameter-Transformation als ein Spezialfall der Alternativ-Hypothese darstellen lässt, wie im unten genannten Beispiel des Münzwurfes. Präzise formuliert ist neben eher technischen Annahmen an die Verteilungsfamilie die folgende Annahme einer „Parametrisierbarkeit der Nullhypothese“ fundamental:
Es seien der Parameterraum der Alternative und der Nullhypothese gegeben, beide Mengen seien offen und es gelte: . Zudem existiere eine zweimal stetig differenzierbare Abbildung mit , deren Jacobi-Matrix für jedes vollen Rang besitzt.
Dann gilt:
- ,
wobei die Zufallsvariablen in Verteilung konvergieren.
Die Beweisidee beruht auf einer Aussage über die Existenz von Maximum-Likelihood-Schätzern in allgemeinen parametrischen Familien und ihrer Konvergenz gegen eine normalverteilte Zufallsvariable, deren Varianz das Inverse der Fisher-Information ist.
Beispiel 2: Münzwurf
BearbeitenEin Beispiel ist der Vergleich, ob zwei Münzen die gleiche Wahrscheinlichkeit haben, Kopf als Ergebnis zu erhalten (Nullhypothese). Wird die erste Münze -mal geworfen mit Kopfwürfen und die zweite Münze -mal geworfen mit Kopfwürfen, dann ergibt sich die Kontingenztabelle unter Beobachtungen. Unter Gültigkeit der Nullhypothese ( ) und der Alternativhypothese ( ) ergeben sich die Wahrscheinlichkeiten wie unter Alternativhypothese und Nullhypothese.
Beobachtungen | Alternativhypothese (H1) | Nullhypothese (H0) | ||||
---|---|---|---|---|---|---|
Münze 1 | Münze 2 | Münze 1 | Münze 2 | Münze 1 | Münze 2 | |
Kopf | ||||||
Zahl |
Unter Gültigkeit der Nullhypothese ergibt sich die Likelihood-Funktion als
und es folgt mit Hilfe der Log-Likelihood-Funktion die Schätzung .
Unter Gültigkeit der Alternativhypothese ergibt sich die Likelihood-Funktion als
und es folgt mit Hilfe der Log-Likelihood-Funktion die Schätzungen bzw. .
Damit ergibt sich als
und als Prüfwert
- ,
der mit einem vorgegebenen kritischen Wert aus der -Verteilung verglichen wird. Da wir in der Alternativhypothese zwei Parameter ( , ) und in der Nullhypothese einen Parameter ( ) haben, ergibt sich die Anzahl der Freiheitsgrade als .
Literatur
BearbeitenP. J. Bickel, K. Doksum: Mathematical statistics. Holden-Day.