Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Der Stromteiler ist eine Parallelschaltung aus passiven elektrischen oder magnetischen Zweipolen, durch die ein elektrischer Strom bzw. ein magnetischer Fluss in mehrere Teilströme/-flüsse aufgeteilt wird.

Stromteiler für Wechselstrom können auch mit Transformatoren realisiert werden, sie heißen dann Stromwandler.

Allgemeine Stromteilerregel

Bearbeiten

Zur einfachen Berechnung der Teilströme bietet sich die Stromteilerregel an. Diese Regel gilt nur, wenn alle Zweige, auf die sich der Gesamtstrom aufteilt, passiv sind. Bei Gleichstrom sind dies ohmsche Widerstände. Bei Wechselstrom wären zusätzlich Kondensatoren (kapazitiver Stromteiler) und Spulen (induktiver Stromteiler) möglich. In magnetischen Schaltungen gibt es nur magnetische Widerstände. Sobald aktive Bauelemente wie Quellen vorkommen, muss auf das Maschenstromverfahren zurückgegriffen werden. Anwendung findet die Stromteilerregel auch bei Berechnung eines Netzwerkes mit Hilfe des Überlagerungsverfahrens.

Die Stromteilerregel lautet:[1][2]

 

oder mit Leitwerten ausgedrückt:

 

mit

 
 
Stromteiler mit ohmschen Widerständen

Verallgemeinert auf n parallele Zweige (i = 1…n) ergeben sich für den Strom in Zweig k:

  • für ohmsche Schaltungen
 

mit dem Gesamtwiderstand   und dem Gesamtleitwert  

  • für komplexe Schaltungen
 

mit der Gesamtimpedanz   und der Gesamtadmittanz  

  • für magnetische Schaltungen
 

mit dem Gesamtwiderstand   und dem Gesamtleitwert  

Die Widerstände eines jeden Zweiges müssen zunächst zu einem Widerstand pro Zweig zusammengefasst werden, um den Gleichungen in der oben abgebildeten Form zu entsprechen. Der Gesamtwiderstand bezieht sich nur auf die betrachtete Parallelschaltung, in der sich der Gesamtstrom aufteilt. Eventuelle Widerstände, die vor oder nach der Parallelschaltung in Reihe liegen, werden nicht berücksichtigt. Bei komplexeren Schaltungen mit mehrfachen Verzweigungen, muss die Formel eventuell mehrmals angewendet werden, um den gesuchten Teilstrom zu erhalten.

Zur groben Kontrolle der mit dieser Regel berechneten Ströme eignen sich zwei einfache Merksätze. Zum einen ist jeder Teilstrom kleiner als der Gesamtstrom, da dieser der Summe aller Teilströme entspricht. Zum anderen verhalten sich die Teilströme in den Zweigen umgekehrt proportional zu ihren Zweigwiderständen. Das bedeutet, je kleiner (größer) der Zweigwiderstand ist, desto größer (kleiner) ist der Teilstrom.

In manchen Quellen wird die Regel etwas modifiziert ausgedrückt. Anfangs wirkt diese Variante etwas schwieriger, doch fällt sie geübten Anwendern mit der Zeit ebenso leicht wie die erste Variante. Sie lautet folgendermaßen:

 

Herleitung der Regel für ein einfaches Beispiel

Bearbeiten
 
Stromteiler aus zwei parallel geschalteten ohmschen Widerständen

Laut den Kirchhoffschen Regeln teilt sich der Gesamt-Strom   auf die beiden Zweige auf:

 

Da über den beiden parallel geschalteten Widerständen die gleiche Spannung abfällt, gilt nach dem ohmschen Gesetz:

 

Löst man diese Gleichung nach   auf

 

und setzt das Ergebnis in   ein, ergibt sich:

 

Dividiert man durch   und bildet auf beiden Seiten den Kehrwert, ergibt sich dasselbe Ergebnis wie für die Stromteilerregel:

  und für den anderen Zweig   mit dem Gesamtwiderstand  

Der Gesamtstrom sowie die Werte der Widerstände sind im Allgemeinen bekannt.

Beispiel mit Mehrfach-Anwendung

Bearbeiten
 
Stromteiler aus drei Zweigen mit einer inneren Verzweigung im untersten Zweig

Gesucht wird der Strom durch  . Dazu wird zunächst der Strom   im untersten Zweig berechnet. Die Stromteilerregel ergibt die Gleichung:

 

mit   und  

Der Teilstrom   fließt durch die Parallelschaltung aus   und  . Durch nochmalige Anwendung der Stromteilerregel, wird der Strom durch   abhängig von   ermittelt:

 

Werden beide Gleichungen miteinander multipliziert, ergibt sich eine Gesamtgleichung, in der   direkt von I abhängig ist:

 

Beispiel für magnetischen Kreis

Bearbeiten
 
Magnetischer Flussteiler aus zwei Zweigen

In magnetischen Schaltungen wird die Regel genauso angewendet. Für die Teilflüsse durch   und   ergeben sich die Gleichungen:

  und für den anderen Zweig   mit dem Gesamtwiderstand der Parallelschaltung  

Anwendung

Bearbeiten

Stromteiler werden insbesondere zur Messung hoher Ströme verwendet, sie heißen dann Shunt, wobei das Messgerät einen der Strompfade bildet. Im Wesentlichen misst es jedoch die am Hauptpfad abfallende Spannung, da es nur von einem sehr kleinen Teilstrom durchflossen wird. In Multimetern befinden sich umschaltbare Stromteiler zur Strommessung in verschiedenen Bereichen.

Einige davon sind unten aufgeführt:[3]

  • Strombegrenzung und Schutz
  • Sensorik und Messung
  • Signalverteilung
  • Wheatstone-Brückenschaltungen
  • Vorspannung in Transistorschaltungen

Siehe auch

Bearbeiten
Bearbeiten

Einzelnachweise

Bearbeiten
  1. Rainer Ose: Elektrotechnik für Ingenieure: Grundlagen. Carl Hanser, 2013, ISBN 978-3-446-43955-9, S. 378 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Reiner Johannes Schütt: Elektrotechnische Grundlagen für Wirtschaftsingenieure: Erzeugen, Übertragen, Wandeln und Nutzen elektrischer Energie und elektrischer Nachrichten. Springer, 2013, ISBN 978-3-658-02763-6, S. 35 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. Current Divider with applications. Abgerufen am 21. Dezember 2024.