(1022) Olympiada

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Asteroid
(1022) Olympiada
{{{Bildtext}}}
{{{Bild2}}}
{{{Bildtext2}}}
Eigenschaften des Orbits Animation
Orbittyp Hauptgürtelasteroid
Asteroidenfamilie
Große Halbachse 2,8078 AE
Exzentrizität 0,1712
Perihel – Aphel NaN AE – NaN AE
Perihel – Aphel 2,3272 AE – 3,2884 AE
Neigung der Bahnebene 21,063°
Länge des aufsteigenden Knotens {{{Knoten}}}°
Argument der Periapsis {{{Periwinkel}}}°
Zeitpunkt des Periheldurchgangs
Siderische Umlaufperiode 4 a 255 d
Siderische Umlaufzeit {{{Umlaufdauer}}}
Mittlere Orbital­geschwin­digkeit 17,77 km/s
Mittlere Orbital­geschwin­digkeit -1,01 km/s
Physikalische Eigenschaften
Mittlerer Durchmesser 26,38 km
Abmessungen {{{Abmessungen}}}
Masse ?Vorlage:Infobox Asteroid/Wartung/Masse kg
Albedo 0,160
Mittlere Dichte ? g/cm³
Rotationsperiode 3,833
Absolute Helligkeit 10,017 mag
Spektralklasse {{{Spektralklasse}}}
Spektralklasse
(nach Tholen)
Spektralklasse
(nach SMASSII)
X
Geschichte
Entdecker W. A. Albizki
Datum der Entdeckung 1924
Andere Bezeichnung 1924 RT, 1928 FQ, 1948 QO
Quelle: Wenn nicht einzeln anders angegeben, stammen die Daten vom JPL Small-Body Database. Die Zugehörigkeit zu einer Asteroidenfamilie wird automatisch aus der AstDyS-2 Datenbank ermittelt. Bitte auch den Hinweis zu Asteroidenartikeln beachten.

(1022) Olympiada ist ein Asteroid des Hauptgürtels, der am 23. Juni 1924 vom russischen Astronomen Wladimir Alexandrowitsch Albizki am Krim-Observatorium in Simejis entdeckt wurde.

Der Asteroid ist den Olympischen Spielen gewidmet, die zum Zeitpunkt der Entdeckung in Paris, Frankreich, stattfanden.

Die Umlaufbahn hat eine Große Halbachse von 2,8078 Astronomische Einheiten und eine Bahnexzentrizität von 0,1712. Damit bewegt er sich in einem Abstand von 2,3272 (Perihel) bis 3,2884 (Aphel) astronomischen Einheiten in 4,705 a um die Sonne. Die Bahn ist 21,063° gegen die Ekliptik geneigt.

Der Asteroid hat einen Durchmesser von 26,38 km und eine Albedo von 0,160. In 3,833 h rotiert er um die eigene Achse.